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Fig. 1. Qualitative results of our Follow-Your-Emoji. The images of the input column are the reference portrait and the corresponding motion landmarks.
Using exaggerated expressions with landmark sequences, our portrait animation framework can animate freestyle reference portraits, e.g., cartoons, realism,
sculptures, and even animals. The input images are from Civitai [civ 2023].
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We present Follow-Your-Emoji, a diffusion-based framework for portrait ani-
mation, which animates a reference portrait with target landmark sequences.
The main challenge of portrait animation is to preserve the identity of the
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reference portrait and transfer the target expression to this portrait while
maintaining temporal consistency and fidelity. To address these challenges,
Follow-Your-Emoji equipped the powerful Stable Diffusion model with two
well-designed technologies. Specifically, we first adopt a new explicit motion
signal, namely expression-aware landmark, to guide the animation process.
We discover this landmark can not only ensure the accurate motion align-
ment between the reference portrait and target motion during inference
but also increase the ability to portray exaggerated expressions (i.e., large
pupil movements) and avoid identity leakage. Then, we propose a facial fine-
grained loss to improve the model’s ability of subtle expression perception
and reference portrait appearance reconstruction by using both expression
and facial masks. Accordingly, our method demonstrates significant per-
formance in controlling the expression of freestyle portraits, including real
humans, cartoons, sculptures, and even animals. By leveraging a simple
and effective progressive generation strategy, we extend our model to sta-
ble long-term animation, thus increasing its potential application value. To
address the lack of a benchmark for this field, we introduce EmojiBench,
a comprehensive benchmark comprising diverse portrait images, driving
videos, and landmarks. We show extensive evaluations on EmojiBench to
verify the superiority of Follow-Your-Emoji. The code, training dataset and
benchmark will be found in https://github.com/mayuelala/FollowYourEmoji.

CCS Concepts: • Computing methodologies → Animation.

Additional Key Words and Phrases: Portrait Animation, Diffusion Model,
Expression-aware landmark, Facial Fine-Grained Loss
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1 introduction
We study the task of portrait animation, which transfers the tar-
get sequences of poses and expressions from the driven video to
the reference portrait. Combined with the generative adversarial
network [Goodfellow et al. 2020] (GAN) and diffusion model [Sohl-
Dickstein et al. 2015], recent portrait animation methods demon-
strate widespread potential applications, such as online conferenc-
ing, virtual characters, and augmented reality.

For the GAN-based portrait animation method [Drobyshev et al.
2022; Liu et al. 2023a; Siarohin et al. 2019; Wang et al. 2021], they
typically utilize a two-stage pipeline which first warps the reference
image in feature space with flow field, then adopts the GAN as
a rendering decoder to refine the warping features and generate
the missing or occluded body parts. However, due to the limited
performance of GAN and the inaccuracy of motion representation of
the flow field, the generation results of these methods always suffer
from unrealistic content and remarkable artifacts. In recent years,
diffusion models [Ho et al. 2020; Song et al. 2020] have showcased
better generation ability than GAN. Some methods bring powerful
foundation diffusion models for high-quality video [Blattmann et al.
2023; Chen et al. 2023, 2024; Guo et al. 2023; He et al. 2022a; Ho
et al. 2022a,b; Wu et al. 2023] and image generation [Ramesh et al.
2022; Rombach et al. 2021; Saharia et al. 2022] with large-scale
image or video datasets. However, these foundation models can not
directly handle the main challenges of the portrait animation task:

preserving the reference portrait’s identity during animation and
effectively modeling the target expression for the portrait.

Intuitively, some methods [Chang et al. 2024; Hu et al. 2023; Wang
et al. 2023a; Xu et al. 2024b; Zhu et al. 2024] try tomodify the architec-
ture of foundation diffusion model (i.e., Stable Diffusion [Rombach
et al. 2021]) with some plug and play modules for portrait anima-
tion task and leverage the pretrained diffusion model as powerful
prior information. Specifically, they utilize an appearance net [Hu
et al. 2023] and CLIP model [Radford et al. 2021] to extract iden-
tity information of the reference portrait and temporal attention
to establish temporal consistency between frames. However, the
video results of these methods exhibit distortions and unrealistic
artifacts, especially when animating uncommon domain portraits
(i.e., cartoons, sculptures, and animals) that are not represented in
the training data. We find this is mainly due to two reasons: (1) The
motion representation (i.e., 2D landmarks [Chang et al. 2024; Hu
et al. 2023] or the motion image itself [Xie et al. 2024]) adopted in
these methods are not robust enough. During inference, 2D land-
marks can easily lead to a misalignment between the facial features
of the reference portrait and the target motion, resulting in iden-
tity leakage. However, setting the motion image itself as the signal
needs to utilize third-party methods to change the identity of the
target motion videos for training, as mentioned in Xportrait [Xie
et al. 2024]. And it will destroy the subtle expression features in
the original motion videos. (2) These methods utilize the original
loss in the diffusion model during training, which is unsuitable for
portrait animation tasks that need the model to focus on capturing
reference facial appearance and expression changes.
In this paper, we present Follow-Your-Emoji, a novel diffusion-

based framework for portrait animation. Apart from the commonly
used appearance net and temporal attention in recent diffusion-
based portrait animation methods, we propose several effective
technologies to address the aforementioned problems. (1) We intro-
duce the expression-aware landmark, a novel expression control
signal, to guide the driving process more effectively. Specifically,
we obtain the landmark by projecting the 3D keypoints obtained
from MediaPipe [Lugaresi et al. 2019]. Owing to the inherent canon-
ical property of 3D keypoints, we can effectively align the target
motion with the reference portrait during inference, thereby avoid-
ing identity leakage. However, MediaPipe is not robust enough,
as the facial contour sometimes fails to conform to the face accu-
rately. Consequently, the process of projecting landmarks has been
modified to exclude facial contours and incorporate pupil points.
This operation enables the model to better focus on expression
changes (i.e., pupil point motion) while preventing it from influ-
encing the shape and destroying the identity information of the
reference portrait through the wrong facial contour. (2) We propose
a facial fine-grained loss function to aid the model in focusing on
capturing subtle expression changes and the detailed appearance
of the reference portrait. Specifically, we first leverage both facial
masks and expression masks with our expression-aware landmark,
then compute the spatial distance between the ground truth and
predicted results in these mask regions.
Through the aforementioned improvements, our approach can

effectively drive freestyle portraits, as illustrated in Figure 1. Addi-
tionally, to train our model, we construct a high-quality expression
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training dataset with 18 exaggerated expressions and 20-minute
real-human videos from 115 subjects. We employ a progressive
generation strategy that enables our method to scale to long-term
animation synthesis with high fidelity and stability. To address the
lack of a benchmark in portrait animation, we introduce a com-
prehensive benchmark called EmojiBench, which consists of 410
various style portrait animation videos that showcase a wide range
of facial expressions and head poses. Finally, we conduct a compre-
hensive evaluation of Follow-Your-Emoji using EmojiBench. The
evaluation results demonstrate the impressive performance of our
method in handling portraits and motions that were outside of the
training domain. Compared with the existing baseline methods, our
method performs quantitatively and qualitatively better, delivering
exceptional visual fidelity, faithful representation of identities, and
precise motion rendering. In summary, our contributions can be
summarized as follows:

• We introduce Follow-Your-Emoji, a diffusion-based framework
for fine-controllable portrait animation. Based on the pro-
posed progressive generation strategy, it can further produce
long-term animation.

• To facilitate freestyle portrait animation, we propose the
expression-aware landmarks as the motion representation
and a facial fine-grained loss to help the diffusion model en-
hance the generation quality of facial expressions.

• To train our model, we introduce a new expression training
dataset with 18 expressions and 20-min talking videos from
115 subjects. To validate the effectiveness of our methods,
we construct a benchmark EmojiBench, and comprehensive
results show the superiority of our Follow-Your-Emoji in
fine-controllable and expressive aspects.

2 Related Work

2.1 Single-forward Portrait Animation
Animating a single portrait has attracted a lot of attention in the re-
search. Previous approaches [Averbuch-Elor et al. 2017; Chang et al.
2024; Drobyshev et al. 2022; Kim et al. 2018; Siarohin et al. 2019; Thies
et al. 2016; Wiles et al. 2018] mainly leverage Generative Adversarial
Networks (GANs) [Goodfellow et al. 2020] to generate plausible mo-
tion using self-supervised learning. Due all GAN method methods
can work without a discriminator, we consider them as the single-
forward methods. The pioneering works primarily involved two
steps: warping and rendering. These methods firstly estimate head
and facial motion with open-source 2D/3D pose predictors [Lugaresi
et al. 2019; Yang et al. 2023]. The facial representation is warped
and fed into a generative model to synthesize dynamic frames with
realistic animation and rich details. Following such a paradigm, a
majority of approaches [Hong et al. 2022; Qu et al. 2023; Wang
et al. 2021; Zhao and Zhang 2022] focus on improve facial warping
estimation, including 3D neural landmarks [Wang et al. 2021], thin-
plate splines [Zhao and Zhang 2022] and depth [Hong et al. 2022].
Additionally, the 3D morphable is utilized to model the expression
and motion in ReenacArtFace [Qu et al. 2023]. ToonTalker [Gong

et al. 2023] employs the transformer architecture to help the warp-
ing process of cross-domain datasets. MegaPortraits [Drobyshev
et al. 2022] enhances rendered image quality using high-resolution
image data, whereas FADM [Zeng et al. 2023] enriches generated de-
tails using the proposed coarse-to-fine animation framework. Face
Vid2Vid [Wang et al. 2021] presents a pure neural rendering to
decompose identity-specific and motion-related information unsu-
pervisedly. In addition to video reenactment, there are also various
driving signals, such as 3D facial prior [Deng et al. 2020; Feng et al.
2021; Fried et al. 2019; Khakhulin et al. 2022; Sun et al. 2023; Xu et al.
2023] and audio [He et al. 2023; Tian et al. 2024; Xu et al. 2024a;
Zhang et al. 2023a]. However, these methods primarily focus on
talking scenarios, and they struggle to synthesize animated frames
with high-quality facial details and diverse domain styles.

2.2 Diffusion-based Portrait Animation
Diffusion models (DMs) [Ho et al. 2020; Song et al. 2020] achieves
superior performance in various generative tasks including image
generation [Rombach et al. 2021; Ruiz et al. 2023; Zhao et al. 2019]
and editing [Brooks et al. 2023; Cao et al. 2023; Hertz et al. 2022],
video generation [He et al. 2022b;Ma et al. 2024a,b; Singer et al. 2022]
and editing [Liu et al. 2023c; Ma et al. 2023; Qi et al. 2023; Zhang
et al. 2023b]. Recently, latent diffusion models further improved
the performance by operating the diffusion step in latent space.
Mainstream portrait animation approaches leverage the power of
Stable Diffusion (SD) [Rombach et al. 2021] and incorporate tempo-
ral information into generation process, such as AnimateDiff [Guo
et al. 2023], MagicVideo [Zhou et al. 2022], VideoCrafter [Chen et al.
2023] and ModelScope [Wang et al. 2023b]. Additionally, to preserve
appearance context in the original image, many works [Chang et al.
2024; Hu et al. 2023; Xu et al. 2024b; Zhu et al. 2024] inject the
reference image into the self-attention blocks in the LDM UNets,
facilitating image editing and video generation. Even though these
models can produce high-quality videos, they mainly rely on textual
prompts for semantic guidance, which can be ambiguous and may
not precisely describe users’ intentions. To address such a problem,
many control signals such as structure [gen 2023; Xing et al. 2024],
pose [Chang et al. 2024; Ma et al. 2024a], and Canny edge [Zhang
et al. 2023b] are applied for controllable video generation. Notely,
several concurrent works [Chang et al. 2024; Hu et al. 2023; Xu et al.
2024b; Zhu et al. 2024] achieve state-of-the-art full-body by seam-
lessly integrating the appearance and motion control into temporal
attentions. However, these methods all focus on full-body animation
and ignore the specific details of the face. In contrast, we innovate
the diffusion-based framework, focusing on driving various style
portraits with detailed facial expressions (e.g., eyes, skins).

3 Method
The pipeline of our method is shown in Fig. 2. Given an input
video clip, we randomly select a frame I0 as the reference portrait
image. Then, we extract the motion sequences {𝐿1, 𝐿2, 𝐿3, ..., 𝐿𝑁 }
(expression-aware landmarks) from the input video. The purpose of
our method is to transfer the expression of the landmark sequences
to I0. Even for reference portraits of uncommon styles (i.e., cartoon,

SA Conference Papers ’24, December 03–06, 2024, Tokyo, Japan.



4 • Yue Ma, Hongyu Liu, Hongfa Wang, Heng Pan, Yingqing He, Junkun Yuan, Ailing Zeng, Chengfei Cai, Heung-Yeung Shum, Wei Liu, and Qifeng Chen

VAE

Landmark 
Encoder

…

VAE

Cross-Attention

Spatial-Attention
Image Prompt Injection

Expression-Aware

Random Reference Frame

❄

❄

Temporal-Attention 

🔥 Tunning Weight 

❄Frozen Weight

Facial Fine-Grained Loss

Tr
ai

ni
ng

Input Video

Denoised Video
🔥

Blending

Concatenation

Progressive Strategy 

… …
CLIP
❄

Qformer

Appearance Net

… …

Denoising Unet

🔥

🔥

Mask

🔥

Landmark Sequence

In
fe

re
nc

e Motion
Alignment…

…

Reference Portrait

Denoising 
Unet  

Appearance 
Net

Progressive Strategy 
KeyFrames

❄

❄

Image Prompt 
Injection❄

❄
VAE

Expression-Aware
Landmark Sequence

Fig. 2. The overview of Follow-Your-Emoji. We extract the features of our expression-aware landmark sequence with a landmark encoder and fuse these
features with multi-frame noise first, then we utilize the progressive strategy to mask the frame of the input latent sequence randomly. Finally, we concatenate
this latent sequence with the fused multi-frame noise and feed it to the Denoising UNet to conduct the denoising process for video generation. The appearance
net and image prompt injection module help our model preserve the identity of the reference portrait, and the temporal attention maintains the temporal
consistency. During training, the facial fine-grinded loss guides the Unet to pay more attention to the facial and expression generation. During inference, we
align the target landmark with the reference portrait with the motion alignment module. Then, we first generate the keyframes and utilize the progressive
strategy to predict long videos.

sculpture, and animal), we hope our method can still predict good
results.

We follow the recent diffusion-based portrait animation methods
in our framework and utilize both the appearance net and temporal
attention. For the control motions injection, we add the features of
our expression-aware landmarks to UNet directly. These features are
extracted with a landmark encoder. Moreover, similar to previous
works [Liu et al. 2023b;Wang et al. 2024a,b; Ye et al. 2023], we encode
the reference image I0 to image token using pre-trained CLIP image
encoder, then the 4-layers Qformer [Zhang et al. 2023d] is employed
to fuse all image token. In the next, we first discuss the motion rep-
resentation and present our expression-aware landmark in Sec. 3.1.
Then, we introduce the facial fine-grained loss in Sec. 3.2. Finally,
for long-term animation, we describe the progressive strategy in
Sec. 3.3.

3.1 Expression-Aware Landmark
Motion representation of facial expressions is essential for portrait
animation. Accurate and precise motion representation enables

conveying the nuances of human emotion and expression, thereby
enhancing the overall realism and impact of the animated portrait.
Recent diffusion-based methods always directly utilize the portrait
image sequences providing the driving motion [Xie et al. 2024] or
the 2D landmarks as the motion representation for training. How-
ever, during the inference process, 2D landmarks cannot ensure
alignment between the target expression and the reference portrait.
This misalignment will lead to inaccurate generated expressions
and potential leakage of the identity information. Directly using the
portrait image providing the driving motion can solve this problem,
but it is necessary to ensure that the person in the motion sequence
is different from the reference portrait during the training process,
which requires another portrait animation method for identity con-
version. This conversion process will damage the accuracy of the
expressions, and the portrait animation method can not transfer the
identity of the uncommon portrait (i.e., turning a dog into a human).
To address the above problems, we introduce the expression-

aware landmark, a newmotion representation for portrait animation.
Specifically, we utilize MediaPipe to extract the 3D keypoints of the

SA Conference Papers ’24, December 03–06, 2024, Tokyo, Japan.
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Fig. 3. The detail of our facial fine-grained loss.We extract the facial
mask and expression mask with our landmark first. Then, we calculate the
denoising loss L𝐹𝐹𝐺 in these masked regions.

portrait from the motion video. We then project these keypoints to
obtain the 2D landmark. During the projection process, we discard
the facial contour while retaining only the facial features. We find
this operation can help the model focus on subtle motion generation
and avoid the inaccuracy of facial contour with large expression
changing, as shown in Fig. 7. Moreover, to capture the motion of the
portrait’s irises, we calculate the related position of the irises in the
eye sockets of 3D keypoints and maintain such a relationship after
projection. In the end, since our expression-aware landmark is built
on the 3D keypoints, we can align the target landmark sequence to
the reference portrait in the canonical space of MediaPipe naturally,
and we denote this process as motion alignment in the inference
step as shown in Fig. 2.

3.2 Facial Fine-Grained Loss
For the portrait animation task, we hope the diffusion model focuses
on expression generation and identity preservation. However, the
diffusion model’s original training objective L𝐿𝐷𝑀 is to learn the
content of all regions of the target image, which has no specific con-
straints for learning the facial content during the training process.
Therefore, we propose the facial fine-grained (FFG) loss to modify
the L𝐿𝐷𝑀 and make the model pay more attention to the content
of facial and expression regions.

As shown in Fig. 3, we need to get two types of masks to capture
the expression and facial regions to calculate the FFG loss. For the
expression mask M𝑒 , we dilate each point of our expression-aware
landmark and set these dilation regions as the expression mask. For
the facial maskM𝑓 , we project the MediaPipe 3D facial contour’s
keypoints and connect these projected points to get the facial masks.
Finally, these two masks split the FFG loss into expression and facial
aspects, respectively. Formally, the loss function can be written as
below:

L𝐹𝐹𝐺 = E
[M𝑒 · (𝑧 − 𝑧) +M𝑓 · (𝑧 − 𝑧)

2]
(1)

where 𝑧 is the prediction latent embedding obtained by decoding the
𝜖𝜃 . With our FFG loss, our method demonstrates better performance
in both identity preservation and expression generation, as shown
in Fig. 6. Finally, our total loss can be written as:

L = L𝐿𝐷𝑀 + L𝐹𝐹𝐺 (2)
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Fig. 4. Examples of the EmojiBench with high expression diversity,
exaggeration, and various visual styles in portrait images.

3.3 Progressive Strategy for Long-Term Animation
With the advancement of technology and increasing user demands,
long-term animation has become increasingly important in prac-
tical applications. Despite training on video clips, previous ap-
proaches [Chang et al. 2024; Hu et al. 2023; Xu et al. 2024b; Zhu et al.
2024] have also attempted to generate long videos during testing.
They always synthesize several overlapping video clips and merge
them using Gaussian smoothing. However, we observe that this
trick leads to the degradation of temporal consistency.
To alleviate the above issues, a progressive strategy is proposed

to generate long-term animation from coarse to fine. Intuitively, to
generate the long-term animation in the inference step, we hope to
generate keyframes first and then use these keyframes to generate
the long-term animation with interpolation operation. To simulate
this process, apart from the first and last latent frames, we mask the
other input video latent frames first. Then, we concatenated this
masked video latent with original UNet inputs to do the denoising
process. With this strategy, we can set the first and last frames
as keyframes in the inference step and help our model generate
long-term animation. Meanwhile, we also mask each latent frame
of the input video with a probability of 0.5, which helps our model
generate the keyframes’s content in the first inference step since
we need to cover all latent frames in this inference step. During the
training process, we switch between these two masking strategies
with a probability of 0.5.

4 Experiment

4.1 Implementation Details
We train our model on HDTF[Zhang et al. 2021], VFHQ[Xie et al.
2022], and our collected dataset jointly, which includes monocular
camera recordings of 18 expressions and 20-minute real-human
video from 115 subjects in indoor scenes. The outdoor scenes data
is from VFHQ. The training stage consists of two stages, in the first
training stage, individual video frames are sampled, resized, and
center-cropped to a resolution of 512 × 512. We finetune it for 30k
steps with a batch size of 32. In the second training stage, we train
the temporal layer for 10,000 steps with 16-frame video sequences
and a batch size of 32. The input images are from Civitai [civ 2023;
Duc 2023; Wai 2023]. More details can be found in supplementary.
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Table 1. Quantitative comparisons with SOTA baselines. We evaluate our framework both self and cross reenactments on 256 × 256 test images.

Method Self Reenactment Cross Reenactment User Study

L1 ↓ SSIM ↑ LPIPS ↓ FVD ↓ ID Similarity ↑ Image Quality ↑ Landmark Accuracy ↑ Expression ↓ Identity ↓ Overall ↓
Face Vid2vid [Wang et al. 2021] 0.042 0.801 0.244 228.9 0.627 39.568 6.12 6.46 7.81 5.92
DaGAN [Hong et al. 2022] 0.063 0.717 0.297 264.7 0.306 38.182 1.58 7.17 6.82 7.33
TPS [Zhao and Zhang 2022] 0.037 0.824 0.208 190.5 0.522 36.938 17.42 4.97 4.52 4.87
MCNet [Hong and Xu 2023] 0.031 0.837 0.193 208.1 0.412 33.981 18.63 5.52 5.31 5.92
FADM [Zeng et al. 2023] 0.045 0.701 0.268 187.4 0.679 33.496 3.95 3.16 3.78 3.86
MagicDance [Chang et al. 2024] 0.043 0.752 0.158 133.6 0.681 58.943 35.62 2.58 2.62 2.75
AniPortrait [Wei et al. 2024] 0.030 0.834 0.132 100.3 0.693 60.287 38.72 1.47 1.62 1.83

Ours 0.029 0.849 0.136 96.8 0.702 66.287 39.16 1.26 1.45 1.72

TPSDaGAN FADMLIA MCNETFace Vid2VidDriving Ours

Input

MagicDance AniPortrait

Fig. 5. The qualitative comparisons with existing methods. Given a reference portrait image and expression-aware landmarks, our approach demonstrates
superior performance in capturing detailed facial expressions and maintaining the original identity of the characters compared to previous methods. More
results are available in the supplementary material. The input images are from Civitai [civ 2023].

Table 2. Quantitative results of ablation study. All metrics are evaluated on 256 × 256 test images. ↑ indicates higher is better. ↓ indicates lower is better.

Method Self Reenactment Cross Reenactment

L1 ↓ SSIM ↑ LPIPS ↓ FVD ↓ ID Similarity ↑ Image Quality ↑ Landmark Accuracy ↓
FFG Loss (w/o Expression Mask) 0.037 0.702 0.159 147.4 0.576 53.792 26.87
FFG Loss (w/o Identity Mask) 0.036 0.721 0.157 149.3 0.548 50.992 34.21
w/o Progressive Strategy 0.035 0.718 0.141 138.8 0.632 52.108 35.32

2D Landmarks 0.039 0.715 0.166 144.1 0.521 50.829 17.45
w Facial Contour points 0.034 0.784 0.153 128.5 0.627 59.781 38.71
w/o Pupil points 0.035 0.762 0.147 103.2 0.648 61.436 33.58

Ours 0.029 0.849 0.136 96.8 0.702 66.287 39.16

4.2 EmojiBench
We introduce EmojiBench, a new benchmark to evaluate the model’s
ability to animate freestyle portraits. Specifically, we collect 410 por-
traits from different domains, including cartoon style, real-human
style, and even animals. These portrait cases are generated from
20 different personalized text-to-image models. We also provide 20
animal portraits, whose landmarks are able to be detected by Me-
diapipe [Lugaresi et al. 2019]. The EmojiBench contains 45 videos
of driving human heads collected from the internet. Each video is
approximately 5 seconds long with 150 frames. The expressions

of EmojiBench include a diverse range of head motion and facial
expressions (e.g., frowning, crossed eyes, and pouting). Note that
the subjects and expressions in training dataset and those in Emo-
jiBench are different. The cases in EmojiBench do not appear in the
training dataset. Such a benchmark with various styles would be
beneficial for the development of the community.

4.3 Comparison with baselines
4.3.1 Qualitative results. We compare our approach with prior por-
trait animation methods visually, including state-of-the-art GAN-
based methods Face Vid2vid [Wang et al. 2021], TPS [Zhao and
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Input Landmarks Ablated results Ours

w/o Expression Mask

w/o Facial Mask

Fig. 6. The effectiveness of facial fine-grained loss. We analyze the
performance of expression and facial aspects of FFG loss, respectively.

Zhang 2022], DaGAN [Hong et al. 2022], MCNet [Hong and Xu
2023] and recent diffusion-based including FADM [Zeng et al. 2023],
MagicDance [Chang et al. 2024] and AniPortrait [Wei et al. 2024].We
exclude MegaPortraits [Drobyshev et al. 2022] and X-portrait [Xie
et al. 2024] from our comparisons as no public release exists. We fine-
tune all the baselines on our collected dataset. The results are shown
in Fig. 5. We find the GAN-based method easily suffers from obvious
artifacts, especially when changing the pose of the head with a large
angle (i.e., see the generation result of the first character). Moreover,
they can not rebuild the subtle expression for the reference portraits
of uncommon style well (i.e., the movement of pupils in the second
character). The diffusion-based methods MagicDance [Chang et al.
2024] and FADM [Zeng et al. 2023] perform better in expression
transfer, but they still can not preserve the identity of reference
portraits during animation. In contrast, our approach exhibits su-
perior ability in handling large pose changing, subtle expressing
generation, and identity preservation for uncommon style portraits.
See more results in Fig. 8 and Fig. 9.

4.3.2 Quantitative results. We compare our method with state-of-
the-art portrait animation on our EmojiBench quantitatively and
the results are shown in Tab. 1. Due to the limited resolution of most
previous works, all measurements are performed in 64 frames at a
resolution of 256 × 256. All evaluation metrics used are as follows:
(a) Self reenactment: For quantitative assessment of image-level
quality, we report the four metrics, L1 error, SSIM [Wang et al. 2004],
LPIPS [Zhang et al. 2018], and FVD [Unterthiner et al. 2018]. For
each video in EmojiBench, the first frame is employed as the refer-
ence image to generate the facial expression sequences. We leverage
subsequent frames to serve as both the driving image and the ground
truth. (b) Cross reenactment means that reference images and
landmark sequences are from different subjects. We evaluate cross
reenactment on four metrics: identity similarity, image quality, ex-
pression landmark accuracy, and user study, respectively. (1) Identity
similarity: the ArcFace score [Deng et al. 2019] is applied to measure
identity preservation. We calculate cosine similarity between source
and generated images. (2) Image quality assessment: We follow [Xie
et al. 2024] to utilize the HyperIQA [Zhang et al. 2023c] for image
quality assessment. (3) Landmark accuracy: To evaluate the pose
accuracy of the generated video, we regard the input facial landmark

OursInput Ablated Landmark Generated Generated

w Facial Contour

w/o Pupil points

2D Landmark

Fig. 7. The effectiveness of expression-aware landmark.We compare
the results when different landmarks is used to guide the portrait animation.

sequences as ground truth and detect the 2D landmark of generated
portraits, computing the average accuracy with driving landmark
sequences. (c) User study: we perform the user study on cross reen-
actment with three aspects. (1) Expression: Evaluating the quality of
generated expression. (2) Identity: Measuring the identity similarity
between the generated frame images and input reference portrait
image. (3)Overall: Evaluating the overall quality of the generated
videos. See more details in supplementary. As reported in Tab. 1,
our approach achieves the best performance in seven metrics of
self/cross reenactment and user study metrics.

4.4 Ablation Study
In the subsequent section, we will analyze the effectiveness of
expression-aware landmark and facial fine-grained loss. As for pro-
gressive strategy for long-term animation, we provide more discus-
sion in supplementary materials. Note that we perform all ablations
in same training setting.

Effectiveness of expression-aware landmark. To prove the effec-
tiveness of our expression-aware landmark, we change our motion
representation to the 2D landmark, expression-aware landmark
with the facial contour, and expression-aware landmark without
pupil points to generate the video, respectively. The visual results
are shown in Fig. 7. 2D landmark has a challenge in handling the
alignment of the facial bounding box between target landmarks
and reference portrait images, as presented in the 1st row. The
expression-aware landmark with the facial contour fails to maintain
the identity of portrait images in non-human styles. This is because
the current open-source landmark detector makes it hard to predict
the facial contour of any style portrait. Finally, we also show the
result produced with expression-aware landmarks without pupil
points. Due to the lack of motion signals of pupil points, it is difficult
to generate lively expressions with pupil motion. In contrast, our
full model demonstrates better performance. The corresponding
numerical evaluation is shown in Tab. 2.
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Effectiveness of facial fine-grained loss. To analyze the perfor-
mance of FFG loss, we discarded the expression and facial aspects
of FFG loss separately to do the experiment. Without facial aspects
of FFG loss, we find our method reduces the ability to protect iden-
tity information and detail appearance of the input portrait (i.e.,
teeth disappeared in the second row of Fig. 6). Meanwhile, when
we abandon the expression aspects of FFG loss, our method can not
capture the subtle expression changing well (i.e., inaccurate pupil
movement in the first row of Fig. 6). The corresponding numerical
evaluation is shown in Tab. 2.

5 Discussion
Conclusion. We introduce Follow-Your-Emoji, a novel diffusion-

based framework for freestyle portrait animation. Incorporating
with the expression-aware landmark, our method shows high per-
formance in subtle and exaggerated facial expression generation.
Meanwhile, we propose a facial fine-grained loss to constrain the
diffusion model focus on expression generation and identity preser-
vation. To train our model, we introduce a new expression training
dataset with 18 exaggerated expressions and 20-minute real-human
videos from 115 subjects. Then, we introduce the progressive strat-
egy for stable long-term animation. Finally, to address the lack
of benchmark in portrait animation, we build the EmojiBench, a
comprehensive benchmark to evaluate our method, the impressive
performance of our model on generalized reference portraits and
driving motions serves as validation of its effectiveness.
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Driving Animation Results

Fig. 8. More portrait animation results.
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Driving Animation Results

Fig. 9. More portrait animation results.
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