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Abstract
Large pre-trained vision language models (VLMs) have demonstrated impressive representation learning capabilities, but
their transferability across various downstream tasks heavily relies on prompt learning. Since VLMs consist of text and visual
sub-branches, existing prompt approaches are mainly divided into text and visual prompts. Recent text prompt methods have
achieved great performance by designing input-condition prompts that encompass both text and image domain knowledge.
However, roughly incorporating the same image feature into each learnable text token may be unjustifiable, as it could result
in learnable text prompts being concentrated on one or a subset of characteristics. In light of this, we propose a fine-grained
text prompt (FTP) that decomposes the single global image features into several finer-grained semantics and incorporates
them into corresponding text prompt tokens. On the other hand, current methods neglect valuable text semantic information
when building the visual prompt. Furthermore, text information contains redundant and negative category semantics. To
address this, we propose a text-reorganized visual prompt (TVP) that reorganizes the text descriptions of the current image
to construct the visual prompt, guiding the image branch to attend to class-related representations. By leveraging both FTP
and TVP, we enable mutual prompting between the text and visual modalities, unleashing their potential to tap into the
representation capabilities of VLMs. Extensive experiments on 11 classification benchmarks show that our method surpasses
existing methods by a large margin. In particular, our approach improves recent state-of-the-art CoCoOp by 4.79% on new
classes and 3.88% on harmonic mean over eleven classification benchmarks.
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Fig. 1 a Input-condition text prompt directly focuses on text and image
domain knowledge via incorporating the same image feature into each
learnable text token. b Our fine-grained text prompt decomposes the
single global image features into several finer-grained semantics and
incorporates them into corresponding text prompt tokens. c Existing

visual prompt learning is based on random initialization or image con-
dition, neglecting textual semantic information. d Our text-reorganized
visual prompt simultaneously explores image and text knowledge and
reorganizes the text descriptions of the current image to construct the
visual prompt for each image

vision tasks such as classification (Yuan et al., 2021a; Wu et
al., 2021; Touvron et al., 2021; Graham et al., 2021), seman-
tic segmentation (Xie et al., 2021; Li et al., 2022b; Liu et
al., 2021b; Wang et al., 2021b), and object detection (Car-
ion et al., 2020; Dai et al., 2021). Nevertheless, constraining
these models to predict within a fixed set of classes limits
their ability to generalize and be versatile. The latest visual-
language models (VLMs), exemplified by CLIP (Radford et
al., 2021) and ALIGN (Jia et al., 2021), have surpassed these
limitations, showcasing remarkable representation and gen-
eralization capabilities by effectively incorporating language
as a supervisory signal. Despite their impressive transfer-
able abilities (Liu et al., 2023a), directly applying pre-trained
VLMs to downstream tasks may not achieve satisfied perfor-
mance due to a potential gap between the pre-training and
the task-specific objectives (Liu et al., 2023b). A straight-
forward strategy for bridging this gap involves fine-tuning,
a process that adapts all parameters of the VLMs to suit the
requirements of specific downstream tasks, utilizing labelled
data (Devlin et al., 2018). However, fine-tuning comes with a
set of drawbacks: entailing substantial computational costs,
prone to overfitting, and susceptible to catastrophic forget-
ting (Houlsby et al., 2019).

Recently, prompt tuning, a simple, compact, and viable
strategy, has become the leading solution for deploying large
pre-trained VLMs into specific downstream tasks. Initially,
CLIP (Radford et al., 2021) directly utilizes hand-crafted
prompts to achieve impressive zero-shot classification per-
formance. But designing appropriate prompts for each
specific task is a non-trivial task. It commonly requires a con-
siderable amount of time and domain knowledge to carefully
refine the choice of words. This is because even a slight mod-

ification in wording can lead to considerable differences in
performance (Zhou et al., 2022b). Inspired by tuning studies
in large language models (LLMs) (Li & Liang, 2021; Lester
et al., 2021), latter studies like CoOp (Zhou et al., 2022b) and
ProDA (Lu et al., 2022), train automatic and learnable text
prompts to alleviate such reliance on hard-prompt designs,
mainly enhancing the flexibility and effectiveness of tun-
ing process. Recent CoCoOp (Zhou et al., 2022a) points out
the limitations of these static uni-modal prompts and intro-
duces a lightweight neural network to encourage text prompts
towards a more comprehensive consideration of both textual
andvisual semantics. Its image-dependent designyields great
performance improvements by effectively exploring the few-
shot domain knowledge of both modalities.

However, as shown in Fig. 1a, CoCoOp ignores the fact
that incorporating the same image feature, denoted as π , into
learnable text tokens, denoted as {v1, . . . , vn}, may be unjus-
tifiable, where such setting may lead to the learnable text
prompts focusing on one or a subset of characteristics (Chen
et al., 2023). To address this, as shown Fig. 1b, we propose
a fine-grained text prompt (FTP) that decomposes the single
global image features into several finer-grained semantics,
denoted as {π1, . . . ,πn}, and incorporates them into differ-
ent text prompt tokens. In this way, our approach achieves
the alignment of different text prompt tokens with distinct
visual local features rather than the single global features.
To be specific, we first leverage the density peak cluster-
ing (DPC) algorithm (Rodriguez & Laio, 2014) to cluster
similar tokens of image features into the same group. Some
clustering examples can be found in Fig. 2. Then, we com-
bine the tokens from the same group into a new one, named
as the synthetic token. In this way, we decomposes the single
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Fig. 2 Visualization of dividing the single global image features into several finer-grained semantics. Tokens are grouped into distinct categories,
marked using different colours
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Fig. 3 Comparison of the accuracy with text-reorganized visual prompt and random-initialization visual prompt during training. Left and right
sub-figures correspond to the results of the base-to-new generalization task on DTD and EuroSAT datasets, respectively

global image features into several finer-grained semantics.
Subsequently, each synthetic token is incorporated into each
corresponding text token, thereby generating finer-grained
text prompts. This approach enables a more precise align-
ment between individual text and image tokens.

Diverging from text prompts, which consider both textual
and visual domain knowledge (Zhou et al., 2022a; Zang et al.,
2022;Khattak et al., 2023;Long et al., 2023b), visual prompts
are usually based on random initialization or image condi-
tion, as illustrated in Fig. 1c. However, random-initialization
visual prompts (Bahng et al., 2022; Wu et al., 2022; Jia
et al., 2022) introduce excessive perturbation for the pixel-
wise image input, which would lead to unstable training
process, thereby resulting in lower classification accuracy
(Fig. 3). Moreover, image-condition visual prompts (Loede-
man et al., 2022) may overlook valuable textual semantic
information when constructing visual prompts. In view of
this, we aim to synergistically leverage both text and image
domain knowledge to construct the visual prompt. However,
directly incorporating text information into visual prompts
is not feasible due to the redundant and negative category
semantics contained in the text information. Therefore, we
propose a text-reorganized visual prompt (TVP) that reorga-
nizes the text descriptions of the current image to construct
the visual prompt for each image. As shown in Fig. 1d, the
text features consist ofM text tokens, whereM represents the
number of categories. We firstly calculate the cosine similar-
ity between each text token and the [CLS] token of image

feature as the importance score. In this way, we obtain the
importance of each category semantic for the current image
in text knowledge. Then, we introduce a token reorganizer
that leverages the importance score of each text token as its
weight to combine different text tokens into a new text token.
Finally, we incorporate the merged text token into each token
of image features as the visual prompt. Benefiting from the
text-reorganized visual prompt, our approach enables guide
the image encoder to focus on class-related representations.

In summary, we propose a new mutual prompt learn-
ing framework, dubbed MPL, which seamlessly integrates
our designed fine-grained text prompt (FTP) and text-
reorganized visual prompt (TVP) for fast adaptation of
frozenVLMs on downstream tasks. In specific, FTP employs
finer-grained image semantics to enable image-dependant
text embeddings, while TVP effectively leverages the text
information to encourage the image branch to attend to class-
related representations. As shown in Fig. 4, image-dependant
text prompts built from image features generate finer-grained
text embeddings. Meanwhile, text embeddings are used to
construct the visual prompt for text reorganization, resulting
inmore representative image features. In this way, the image-
to-text FTPand text-to-imageTVPcanbe tightly coupled and
mutually promoted to enhance the adaptation of VLMs for
downstream tasks. Our main contributions are summarized
in the following.
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• To solve the issues in the current text and visual prompts,
we propose a mutual prompt learning (MPL) approach
consisting of a fine-grained text prompt and a text-
reorganized vision prompt as a strong baseline for reacti-
vating the task-related representation abilities of VLMs.

• We propose a fine-grained text prompt that decomposes
the single global image features into several finer-grained
semantics and incorporates them into corresponding text
prompt tokens. In this way, we achieves the alignment
of different text prompt tokens with distinct visual local
features rather than the single global features.

• We construct a text-reorganized visual prompt that lever-
ages text information to construct the visual prompt to
guide the image branch to attend to class-related repre-
sentations. In TVP, we reorganize the text descriptions of
the current image to remove the redundant and negative
category semantics contained in the text information.

• Benefiting from the mutual learning strategy, our method
achieves new state-of-the-art (SOTA) results on four
downstream tasks. For example, MPL significantly out-
performs the current SOTA CoCoOp by 4.79% on new
classes and 3.88% on harmonic-mean over eleven clas-
sification benchmarks.

This work represents an extension of our conference paper
(Long et al., 2023b) published on ICCV 2023. We have sub-
stantially expanded upon the initial conference version of our
research in the followingways. First,we introduce a newfine-
grained text prompt approach to align different text prompt
tokens with distinct visual local features rather than the sin-
gle global features, which is parameter-free, efficient and
effective compared to the text prompt used in the conference
version (Long et al., 2023b). Second, we extend the origi-
nal text-guided feature tuning module as a text-reorganized
visual prompt, which constructs a text-guided visual prompt
to encourage the image branch to attend to class-related
representations. Third, we provide more insights into the
prompt designs and conduct extensive ablation studies to
investigate the influences of textual and visual prompt hyper-
parameters on model performance, including text prompt
initialization, text prompt context length, and visual prompt
location. Fourth, we further compare MPL with two vanilla
structures and two task-oriented strategies (Long et al.,
2023b) to demonstrate the effectiveness and efficiency of
our method. All these improvements help us set new SOTA
results on eleven benchmark datasets. We hope that our pro-
posed method and various explorations can further inspire
future research on fast adaptation of large-scale VLMs and
advance the development of this frontier.

2 RelatedWork

2.1 Vision LanguageModels (VLMs)

Existing VLMs can be roughly grouped into one-stream and
dual-stream model structures. The one-stream architecture
(Li et al., 2019; Su et al., 2019; Chen et al., 2020b; Kim et al.,
2021) refers to concatenating textual and visual features as
input to a single transformer-based encoder. Benefiting from
the unordered representation nature of the transformer, the
single-stream architecture can handle different input formats
in different vision language tasks in a unified framework.
For example, VisualBERT (Li et al., 2019) treats the cap-
tured image features as unordered input tokens and feeds
them together with the text into multiple transformer layers
for joint processing.While single-stream architecture param-
eters that take the same set of parameters for both modalities
are more efficient, they may ignore interactions within a sin-
gle modality. Therefore, another part of the work leverages a
dual-stream architecture to separately model the vision and
language modalities.

The dual-stream architecture (Zhang et al., 2020; Dou et
al., 2022) refers to independently feeding textual and visual
features to two different transformer-based encoders. Then,
the two encoders project the image features and text embed-
dings to the same semantic space by using a contrastive loss
function (Radford et al., 2021; Jia et al., 2021). For exam-
ple, CLIP leverages 400 million image-text pairs to train
a large-scale multi-modal model, achieving promising rep-
resentation learning capabilities. Motivated by this work,
numerous follow-ups have been proposed to improve the
effectiveness (e.g., FLIP (Li et al., 2022a), A-CLIP (Yang
et al., 2022), MaskCLIP (Dong et al., 2022), and SLIP (Mu
et al., 2022)) or apply it to other domains (e.g., DenseCLIP
(Rao et al., 2022) and ActionCLIP (Wang et al., 2021a)).
However, their transfer ability relies heavily on prompt learn-
ing. To tackle this issue, we design text-reorganized visual
prompt (TVP) and fine-grained text prompt (FTP) according
to dual-stream architecture. In this way, an automatic, learn-
able mutual prompt approach enhances the generalization
performance of pre-trained models to downstream tasks.

2.2 Prompt Learning in Large LanguageModels

Recent large language models (LLMs) like T5 (Raffel et al.,
2020), GPT-3 (Brown et al., 2020), Bloom (Scao et al., 2022)
and LLaMA (Touvron et al., 2023) have shown promising
performance in natural language processing tasks. It pushes
language tasks to a higher level and has attracted extensive
attention in academia and industry.

123



International Journal of Computer Vision

Although these LLMs can capture rich knowledge from
massive corpora, they still need fine-tuning to apply to down-
stream tasks. As the scale of LLMs continues to increase, it
becomes prohibitive to fine-tune all the parameters of the
model. Lightweight and efficient prompt learning becomes a
new paradigm for adapting LLMs to downstream tasks.

Existing prompt learning approaches are mainly divided
into hand-craft and automatic prompts. The initial prompts
are intuitive templates manually designed based on human
perception. For example, the LAMA dataset (Petroni et al.,
2019) manually constructs cloze templates from multiple
datasets to explore knowledge in LLMs.However, hand-craft
prompt often demands extensive experimentation, experi-
ence, and language expertise, resulting in time-consuming
and difficult-to-optimize results. To solve these problems,
later studies train an automatic and learnable prompt through
few-shot corpora knowledge. Automatic prompts can be
divided into discrete prompts and continuous prompts. Dis-
crete prompts mainly include prompt mining (Jiang et al.,
2020), prompt paraphrasing (Yuan et al., 2021b; Haviv et al.,
2021), gradient-based search (Wallace et al., 2019), prompt
generation (Gao et al., 2020) and prompt scoring (Davison et
al., 2019). Continuous prompts consist of various approaches
such as prefix tuning (Li & Liang, 2021), tuning initialized
with discrete prompts (Shin et al., 2020) and hard-soft prompt
hybrid tuning (Liu et al., 2021a). It inspires research meth-
ods for prompt learning in computer vision. Vision contains
much less high-level semantic information than language,
making the task more challenging.

2.3 Prompt Learning in Vision LanguageModels

Prompt learning has received increasing attention in adapt-
ing vision language models (VLMs) to downstream tasks.
Since VLMs consist of text and visual branches, existing
prompt learning approaches are mainly divided into text and
visual prompt learning. In text prompt learning, CoOp (Zhou
et al., 2022b) trains automatically learnable text prompts on
the downstream task for the first time. CoCoOp (Zhou et
al., 2022a) extends CoOp via designing an input-condition
prompt that directly focuses on text and imagedomainknowl-
edge. However, existing input conditional text prompts that
incorporate the same image features into each learnable text
token may cause learnable text prompts to focus on one or
a subset of characteristics. We propose a fine-grained text
prompt (FTP) that decomposes the single global image fea-
tures into several finer-grained semantics and incorporates
them into corresponding text prompt tokens. Among existing
methods, the most related to fine-grain prompt tuning (FTP)
is thePLOT (Chen et al., 2023).BothFTPandPLOTmethods
argue that roughly incorporating the same image feature into
text prompts may be problematic, as it could result in learn-
able text prompts being concentrated on one or a subset of

characteristics. Differently, PLOT applies optimal transport
to align the local visual features and text features indirectly
optimizing multiple text prompts. FTP decomposes the sin-
gle global image features into several finer-grained semantics
and directly merges them into the text prompt tokens. Con-
sequently, our method achieves 80.35% on the average of 11
datasets, against 76.20% of PLOT by a large margin.

Unlike the above methods, visual prompt learning pro-
vides a new perspective on adapting pre-trained VLMs in
vision. VPT (Jia et al., 2022) introduces a small number
of learnable parameters into the vision sequence of each
transformer layer. VP (Bahng et al., 2022) pads the region
around the visual imagewith learnable parameters as a vision
prompt. EVP (Wu et al., 2022) shrinks the original image
before padding the prompts around it to avoid destroying
the original image information. PGN (Loedeman et al.,
2022) generates prompts conditioned on the input images.
However, building the visual prompt based on random ini-
tialization or image condition both neglect textual semantic
information. We propose a text-reorganized visual prompt
(TVP) to simultaneously explore both modality knowledge
while reorganizing the text descriptions of the current image.

3 Preliminaries

In this section, we first introduce a representative VLM,
CLIP, which utilizes hand-crafted prompts in a zero-shot
manner for downstream tasks. Next, we discuss existing
prompt learning methods, which are mainly divided into text
and visual prompt learning. In the text prompt learning, we
introduce CoOp (Zhou et al., 2022b), the first soft-prompt
approach, and CoCoOp (Zhou et al., 2022a), an input-
condition prompt method. On the other hand, we introduce
the random initialization manner VP (Bahng et al., 2022)
and the image-condition way PGN (Loedeman et al., 2022)
in visual prompt learning.

3.1 Vision LanguageModels

The most popular visual language model, CLIP, utilizes 400
million image-text pairs to train large-scalemultimodalmod-
els and demonstrates impressive performance on various
tasks, including zero-shot image recognition.We analyze the
VLMsadaptationproblemby takingCLIPas an example.But
note that our method can be easily applied to the VLMs.

CLIP consists of twobranches: an image encoderφ(·) and
a text encoder θ(·). The image encoder typically leverages a
vision transformer (ViT) as the backbone, which is used to
convert an image x ∈ R

3×H×W into a d-dimensional image
feature f ∈ R

N×d , where N is the number of split patches,
andd =512 in theViTbackbone.Meanwhile, the text encoder
adopts a 12-layer transformer (Vaswani et al., 2017), which
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takes a sequence of word tokens as text input and gener-
ates an d-dimensional text representation t ∈ R

M×d , where
M is the number of classes. The two encoders are jointly
trained using a contrastive loss function to align image and
text feature spaces, which enables the model to transfer to
downstream tasks in a zero-shot manner. After training, the
entire parameters of the CLIPmodel are kept frozen to down-
stream tasks. Due to the gap between the pre-training target’s
textual description and the downstream task’s discrete label,
CLIP employs hand-crafted prompt templates to transform
raw labels into textual descriptions. In the classification task,
the prediction objective is defined as the classification of an
image into one of C categories, which are represented by the
set y ∈ {1, . . . , C}. The common form of prompt template is
“a photo of a [CLASS]”, where the[CLASS] token
is filled with the i-th class name such as “dog”, “fish”,
“bird”, etc. Thenwe construct M textual descriptions based
on class labels. In this way, the text features t can be obtained
by feeding the textual descriptions into the text encoder, and
ti is the i-th class token of text features. We let the image
features f of an image x be extracted by an image encoder,
and then we have the predicted probability of the i-th class:

P(y = i | x) = exp (cos (fcls, ti ) /τ)
∑C

j=1 exp (cos (fcls, ti ) /τ)
, (1)

where fcls denotes the [CLS] token of the image feature f ,
cos(·, ·) denotes the cosine similarity, and τ is the tempera-
ture parameter of the softmax function.

3.2 Prompt Learning

Since VLMs consist of text and visual branches, existing
prompt learning approaches are mainly divided into text and
visual prompt learning.

Text prompt learning. CoOp (Zhou et al., 2022b) for
the first time shows that replacing the hand-crafted prompts
with automatic prompts yields a considerable performance
gain. Specifically, CoOp introduces k learnable vectors
{v1, . . . , vk} to model the context words of the text prompts.
We define ci as the word embedding of the i-th class name.
Then, the text prompt of the i-th class is denoted as pi =
{v1, . . . , vk, ci }. Therefore, we have the predicted probabil-
ity of the i-th class:

P(y = i | x) = exp (cos (fcls, ti ) /τ)
∑C

j=1 exp
(
cos

(
fcls, t j )/τ

) , (2)

where t j is the text embedding from the text encoder.
CoCoOp (Zhou et al., 2022a) extends CoOp by designing

an input-condition prompt that learns both text and image
domain knowledge. As shown in Fig. 1a, CoCoOp introduces

a lightweight Meta-Net network ψ(·) to dynamically gener-
ate promptsπ = ψ(φ(x)) for each image x. Each text prompt
token is now acquired by vi (x) = vi + π . The prompt of the
i-th class ci is defined as pi = {v1(x), . . . , vk(x), ci }. Based
on the updated prompts pi , the predicted probability of the
i-th class is similar to Eq. 2.

Visual prompt learning. The text prompt learning only
adapts to the frozen VLMs by modifying the text data space.
Since both text and visual branches jointly infer the final
recognition of VLMs. VP (Bahng et al., 2022) introduces
a small number of learnable parameters padded around the
input image to fit the frozen VLMs by modifying the image
pixel space. As shown in Fig. 1c, the random-initialization
method, VP adds the visual prompt parametersw to the input
image x to form a prompted input image x+w. We have the
predicted probability of the i-th class:

P(y = i |x)= exp(cos (φ(x+w), ti ) /τ)
∑C

j=1 exp
(
cos

(
φ(x+w), t j

)
/τ

) , (3)

where φ(x+w) is the image feature from the image encoder.
PGN (Loedeman et al., 2022) generates the visual prompt

conditioned on the input images instead of random initial-
ization. As shown in Fig. 1c, the image-condition method
PGN introduces an extra neural network σ(·) to learn the
dependency ε = σ(x). In this way, the input images x can be
directly transformed into the prompt vectors ε. The predicted
probability of the i-th class is similar to Eq. 3.

4 Mutual Prompt Learning

Our method consists of two modules, i.e., fine-grained text
prompt (FTP) and text-reorganized visual prompt (TVP),
as shown in Fig. 4. In the FTP module, we design a fine-
grained text prompt to align different text prompt tokens with
distinct visual local features rather than the single global fea-
tures. On the other hand, compared to existing visual prompt
approaches, the TVP module leverages text information to
construct the visual prompt to guide the image branch to
attend to class-related representations. The text and image
prompt modules are tightly coupled and mutually beneficial
throughout the training process.

4.1 Fine-grained Text Prompt

In this section, we introduce a new fine-grained text prompt
(FTP) approach to align different text prompt tokens with
distinct visual local features rather than the single global
features,which is parameter-free, efficient and effective com-
pared to our previous version CTP Long et al. (2023b). In the
proposed FTP, the core idea is to decouple the single global
image features into several finer-grained semantic and add the
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Fig. 4 Illustration of our approach. We introduce FTP and TVP to text
andvisual sub-branches, respectively. TheFTPgenerates prompts based
on finer-grained image information instead of using identical image
semantics like CoCoOp. The TVP simultaneously explores image and

text knowledge to construct the visual prompt rather than random ini-
tialization or image-condition. We leverage TVP and FTP to mutually
prompt and fully unleash the potential representation capabilities of both
modalities, achieving better downstream generalization performance

each merged token to different text prompt tokens. Specifi-
cally, we apply a density peak clustering algorithm to cluster
tokens in image features, thenmerge the tokens from the same
cluster into a new token by a weighted sum. In this way,
we can obtain k merged tokens {u1, . . . ,uk}, correspond-
ing to k learnable tokens {v1, . . . , vk} in the text prompt.
We further fuse the merged image tokens and learnable
text prompt tokens to generate image-aware text prompts,
which is {u1 + v1, . . . ,uk + vk, c}. In the following, we first
introduce the clustering algorithm, and then present how to
generate image-aware text prompts based on the image token
clusters.

Commonclustering algorithms such asK-means andHier-
archical Clustering (Hartigan & Wong, 1979; Hastie et al.,
2009) require multiple iterations and extra parameters to
acquire good cluster results. However, we need an effec-
tive and efficient cluster approach for parameter-efficient
fine-tuning. After extensive research, we find the density
peak clustering algorithm (DPC) (Rodriguez & Laio, 2014)
achieves remarkable performance without requiring an iter-
ative process and extra parameters. The basis of the DPC
algorithm is the assumption that the local density of the clus-
ter center is higher than that of its neighbors, and the distance
between it and any point with a higher density is relatively
large. In order to define the local range of each point, a hard
threshold cut-off distance is introduced in theDPCalgorithm.
Considering only a few dozen tokens for clustering in image
features, the Gaussian kernel function is more effective for
small-scale clustering (Du et al., 2016; Chen et al., 2020a).

Therefore, we simplify the density as the inverse measure of
the distance. For the image features f , it contains N tokens in
total. Let the i-th token be fi , and its corresponding density
ρi is calculated as following:

ρi = exp

⎛

⎝−
∑

f j ∈f

∥
∥fi − f j

∥
∥2
2

⎞

⎠ , (4)

where fi and f j are the i-th and j-th tokens, respectively.
Then, the minimum distance between the i-th token and

any other tokenswith higher density, denoted by δi , is defined
as:

δi =
{
min j :ρ j >ρi

∥
∥fi −f j

∥
∥
2 , if ∃ j s.t. ρ j >ρi

max j
∥
∥fi −f j

∥
∥
2 , otherwise

, (5)

wheremax j
∥
∥fi − f j

∥
∥
2 denotes themaximumdistance betw-

een the i-th token and any other tokens. Since there is no
higher density token for the highest density token, we define
its minimum distance as the maximum distance between it
and any other tokens.

According to the DPC algorithm, only points with rela-
tively high ρi and δi are considered as cluster centers. To this
end, we denote the cluster center score ηi of the i-th token as

ηi = ρi × δi , (6)

where ρi and δi are the density and distance of the i-th token,
respectively.
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Higher scores η mean a higher potential to be cluster cen-
ters. Since introducing k learnable tokens {v1, . . . , vk} in the
text prompts, we select the k highest scoring tokens as clus-
ter centers. Finally, we construct k clusters by assigning each
remaining token to its nearest center token. For simplicity,
we denote such k clusters as C = {C1, . . . ,Ck}.

Although tokens in the same cluster have similar seman-
tic information, the semantic importance of each token is
not necessarily the same. Instead of blindly averaging the
tokens in the same cluster, we combine these tokens by a
weighted sum. Referring to (Liang et al., 2022), we calculate
the importance score of each token by

Acls = softmax

(
fcls · f�√

d

)

, (7)

where fcls denotes the [CLS] token of the image feature.
Since the [CLS] token is taken out for classification in the
last layer of the encoder. It is naturally to assume that the
class attention value Acls indicates the importance score of
each token. By introducing a class attention value Acls to
represent the importance score, we combine the tokens of
the i-th cluster Ci into a new token ui by

ui =
∑

f j ∈Ci

s j f j , (8)

where s j ∈ Acls denotes the importance score of token f j ,
and Ci denotes the i-th cluster.

In this way, we can obtain k merged tokens {u1, . . . ,uk}.
Note that the k merged tokens are fixedly arranged in
descending order of cluster center scores. Then we add the
k merged tokens to the learnable text tokens in descend-
ing order of their cluster center scores. Considering that the
learnable text tokens are randomly initialized in our method
without any prior information, so it is reasonable for us to
add merged tokens to the text tokens in a certain order. In
this way, the i-th token of text prompt is now denoted by
vi (x) = vi + ui . The prompt of the i-th class ci is defined
as pa

i = {v1(x), . . . , vk(x), ci } and then input it into the text
encoder to generate enhanced text features ta . As a result,
the prediction probability of the i-th class is:

Pf tp(y = i | x)= exp (cos (fcls, ta) /τ)
∑C

j=1 exp (cos (fcls, ta)/τ)
, (9)

where ta is the enhanced text embedding from the text
encoder, incorporating text and image knowledge.

4.2 Text-reorganizedVisual Prompt

In this section, we simultaneously leverages image and text
features to construct visual prompts that guide the image

branch to attend to class-related representations. In previous
version TFT Long et al. (2023b), we propose a text-guided
feature tuning strategy that utilizes global text information
to guide images to focus on task-relevant regions. However,
not all class prompts in text features contribute positively
to the final classification task. To this end, we further pro-
pose a text-reorganized visual prompt (TVP) that reorganizes
the text label descriptions of the current image according to
the importance scores of different categories. Specifically, as
shown in Fig. 1d, we calculate the cosine similarity between
each text class token and the image [CLS] token as the
importance score.Mathematically, the similarity scoresAsim

between the image [CLS] token and text tokens can be cal-
culated by

Asim = softmax

(
fcls · (ta)�√

d

)

, (10)

where fcls denotes the [CLS] token of the image feature.
Then, we merge different text tokens into a new text token
tacls according to the similarity scores Asim by

tacls = Asim · ta, (11)

where tacls denotes the reorganized token of the text feature.
Finally, we add the merged text token to the image feature
by

� = Norm
(
f + tacls

)
, (12)

where � is the visual prompt vectors and Norm(·) refers to
layer normalization (Ba et al., 2016). Then we add it to d-
dimensional token embeddings to obtain prompted image
tokens e = Embed(x) + �. Let fa = φ(e) denotes the
enhanced image feature from the image encoder, then the
predicted probability of the i-th class is:

Ptvp(y = i |x)= exp
(
cos

(
fa
cls, t

a
i

)
/τ

)

∑C
j=1 exp

(
cos

(
fa
cls, t

a
j

)
/τ

) , (13)

where fa
cls denotes the [CLS] token of the image feature fa

and taj is the enhanced text embedding from the text encoder.

4.3 Overall Contrastive Loss Function

The contrastive loss function is employed to further align
prompted text and image features on specific downstream
tasks. Text and image semantic information is transferred
between the two branches by minimizing the overall con-
trastive loss. We merge the prediction probability of Pf tp

(Eq. 9), and Ptvp (Eq. 13),

Pall(y = i | x) = (αPf tp + β Ptvp)/2, (14)
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Table 1 Results (%) of the base-to-new generalization task on 11 benchmark datasets. We report the accuracy with CLIP ViT-B/16 model on the
base classes (Base), the unseen classes (New), and the harmonic mean of both of them (Hos)

Method Average over 11 datasets ImageNet Caltech101 OxfordPets
Base New Hos Base New Hos Base New Hos Base New Hos

CLIP 69.34 74.22 71.70 72.43 68.14 70.22 96.84 94.00 95.40 91.17 97.26 94.12

CoOp 82.69 63.22 71.66 76.47 67.88 71.92 98.00 89.81 93.73 93.67 95.29 94.47

CoCoOp 80.47 71.69 75.83 75.98 70.43 73.10 97.96 93.81 95.84 95.20 97.69 96.43

ProDA 81.56 72.30 76.65 75.40 70.23 72.72 98.27 93.23 95.68 95.43 97.83 96.62

VarPT 80.10 74.94 77.43 76.00 70.93 73.37 98.00 94.93 96.44 95.67 98.00 96.82

LASP 81.42 74.17 77.62 76.23 70.40 73.20 97.80 94.25 96.00 95.43 97.70 96.55

MaPLe 82.28 75.14 78.55 76.66 70.54 73.47 97.74 94.36 96.02 95.43 97.76 96.58

CTP+TFT 83.01 75.72 79.02 77.42 70.44 73.77 98.31 94.75 96.50 95.86 97.55 96.70

Ours 83.67 76.48 79.71 76.81 70.85 73.71 98.64 95.31 96.95 95.48 97.65 96.55

Method StanfordCars Flowers102 Food101 FGVCAircraft
Base New Hos Base New Hos Base New Hos Base New Hos

CLIP 63.37 74.89 68.65 72.08 77.80 74.83 90.10 91.22 90.66 27.19 36.29 31.09

CoOp 78.12 60.40 68.13 97.60 59.67 74.06 88.33 82.26 85.19 40.44 22.30 28.75

CoCoOp 70.49 73.59 72.01 94.87 71.75 81.71 90.70 91.29 90.99 33.41 23.71 27.74

ProDA 74.70 71.20 72.91 97.70 68.68 80.66 90.30 88.57 89.43 36.90 34.13 35.46

VarPT 72.93 73.23 73.07 95.70 70.40 81.12 91.03 92.13 91.57 34.40 35.00 34.69

LASP 72.73 71.74 72.23 96.20 73.93 83.61 90.70 91.36 91.02 33.03 32.30 32.66

MaPLe 72.94 74.00 73.47 95.92 72.46 82.56 90.71 92.05 91.38 37.44 35.61 36.50

CTP+TFT 76.29 74.17 75.22 97.36 77.70 86.43 90.48 91.89 91.18 39.49 35.37 37.32

Ours 76.64 74.89 75.75 98.29 75.89 85.65 90.54 92.31 91.42 41.48 34.37 37.59

Method SUN397 DTD EuroSAT UCF101
Base New Hos Base New Hos Base New Hos Base New Hos

CLIP 69.36 75.35 72.23 53.24 59.90 56.37 56.48 64.05 60.03 70.53 77.50 73.85

CoOp 80.60 65.89 72.51 79.44 41.18 54.24 92.19 54.74 68.69 84.69 56.05 67.46

CoCoOp 79.74 76.86 78.27 77.01 56.00 64.85 87.49 60.04 71.21 82.33 73.45 77.64

ProDA 78.67 76.93 77.79 80.67 56.48 66.44 83.90 66.00 73.88 85.23 71.97 78.04

VarPT 79.17 77.87 78.51 75.30 60.80 67.27 80.30 75.30 77.71 82.53 75.77 79.00

LASP 80.33 77.93 79.12 79.57 59.47 68.06 90.26 69.23 78.46 83.43 77.60 80.40

MaPLe 80.82 78.70 79.75 80.36 59.18 68.16 94.07 73.23 82.35 83.00 78.66 80.77

CTP+TFT 82.16 77.49 79.76 79.47 61.53 69.36 92.14 73.87 82.00 84.12 77.74 80.80

Ours 81.66 77.47 79.51 81.37 61.11 69.80 93.48 82.08 87.41 85.99 79.72 82.74

where α and β are the balance hyper-parameters, which are
analyzed in our experiments.We let the two different modali-
ties be tightly coupled andmutual beneficial across thewhole
training process by performing the contrastive optimization.

5 Experiments

We evaluate the performance of our MPL on four tasks,
including (1) base-to-new classes generalization (Sect. 5.2);
(2) few-shot classification (Sect. 5.3); (3) cross-dataset trans-
fer (Sect. 5.4); (4) domain generalization (Sect. 5.5). Addi-

tionally, we provide extensive ablation studies and further
analysis (Sect. 5.6).

5.1 Setup

Datasets. To evaluate the effectiveness of our approach, we
conduct experiments on 11 image recognition datasets for the
first three tasks, namely base-to-new classes generalization,
few-shot classification and cross-dataset transfer. Following
(Radford et al., 2021; Zhou et al., 2022b), these include
generic image classification datasets (ImageNet by (Deng
et al., 2009) and Caltech101 by (Fei-Fei et al., 2004)), fine-
grained classification datasets (Oxford Pets by (Parkhi et al.,
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Fig. 5 Absolute improvement over CoCoOp in the base-to-new generalization task. Compared to CoCoOp, our method achieves improvement on
both base (left sub-figure) and new (right sub-figure) classes on most of the datasets

2012), StanfordCars by (Krause et al., 2013), Flowers102
by (Nilsback & Zisserman, 2008), Food101 by (Bossard
et al., 2014) and FGVCAircraft by (Maji et al., 2013)),
scene recognition (SUN397 by (Xiao et al., 2010)), action
recognition (UCF101 by (Soomro et al., 2012)), texture
classification (DTD by (Cimpoi et al., 2014)), and satellite
imagery recognition (EuroSAT by (Helber et al., 2019)). For
the domain generalization task, we choose ImageNet as the
source domain dataset and report our evaluation result on
four target domain datasets which are the ImageNet variants,
namely ImageNetV2 (Recht et al., 2019), ImageNet-Sketch
(Wang et al., 2019), ImageNet-A (Hendrycks et al., 2021b),
and ImageNet-R (Hendrycks et al., 2021a).

Training details.By following (Zhou et al., 2022a, b), we
leverage a few-shot training strategy in all experiments, ran-
domly sampling 16 samples from each class. We leverage
ViT-B/16 as the visual encoder and a 12-layer transformer
as the text encoder throughout the experiments. For the text
prompt, we fix the context length to 6 and randomly initial-
ize the prompt vector by drawing from a zero-meanGaussian
distribution with a standard deviation equal to 0.02. For each
task and dataset, we train 10 epochs using the SGD opti-
mizer with a base learning rate of 0.002 and a cosine decay
schedule. We set the hyper-parameters α and β in Equation
(14) to 1 for all experiments and provide sensitivity analyses
in Fig. 10. We ran all the experiments three times with dif-
ferent random seeds and reported the average classification
accuracy. The implementation code will be released.

Baselines. We compare our method with text prompt,
visual prompt, universal prompt, and adapter fine-tuning
approaches. For text prompt learning, we compareMPLwith
CoOp (Zhou et al., 2022b), CoCoOp (Zhou et al., 2022a),
ProDA (Lu et al., 2022), VarPT (Derakhshani et al., 2022),
LASP (Bulat & Tzimiropoulos, 2022), and ProDA (Lu et al.,
2022). ProDA (Lu et al., 2022) proposes prompt distribution

learning, which not only learns from presented few samples
but also captures the distribution of diverse prompts. VarPT
(Derakhshani et al., 2022) propose probabilisticmodelling of
the underlying prompt distribution, providing better gener-
alization capabilities for downstream tasks. LASP (Bulat &
Tzimiropoulos, 2022) adds a cross-entropy loss to minimize
the distance between the learned and hand-crafted prompts.
For visual prompt learning, we compare MPL with VPT
(Derakhshani et al., 2022), VP (Bahng et al., 2022) and EVP
(Wu et al., 2022).

For universal prompt learning, we compare MPL with
UPT (Zang et al., 2022), MaPLe (Khattak et al., 2023) and
CTP+TFT (Long et al., 2023b). UPT (Zang et al., 2022) pro-
poses a self-attention network to generate both textual and
visual prompts, which can preserve the benefits of a single
modality. MaPLe (Khattak et al., 2023) proposes multi-
modal prompt learning to improve alignment between the
vision and language representations. CTP+TFT (Long et al.,
2023b) proposes class-aware text prompt and text-guided
feature tuning to realize task-oriented multi-modal mutual
learning. For adapter fine-tuning, we compare MPL with
CLIP-Adapter (Gao et al., 2021), Tip-Adapter-F (Zhang et
al., 2021) and TaskRes (Yu et al., 2023). CLIP-Adapter (Gao
et al., 2021) adopts an additional bottleneck layer on the
vision or language branch to learn new features and perform
residual style feature blending with the original pre-trained
features. Tip-Adapter-F (Zhang et al., 2021) builds a key-
value cache model from a few samples, which can obtain
adapter weights with good performance without any train-
ing. TaskRes (Yu et al., 2023) decouples the prior knowledge
of the pre-trained model and the new knowledge about the
target task and directly performs on the text classifier. In addi-
tion, we compareMPLwith zero-shot CLIP, which leverages
hand-crafted prompts designed specifically for each dataset.
In order to fully demonstrate our performance, we compare
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experimental results on MPL not only with the approved
papers but also with the latest papers.

5.2 Generalization from Base to New Classes

To verify the generalization ability from base to new classes,
we split the classes of each dataset equally into two groups:
base classes (Base) and new classes (New). The learnable
parameters introduced by all methods are trained only on
the base classes, and the accuracy is evaluated separately
on the base classes and the new classes. We leverage the
harmonic mean to evaluate the average accuracy of base
classes and new classes. Table 1 shows the comparison of
our MPL approach with recent prompt learning works on
11 benchmarks. We observe that the proposed MPL obtains
the best average performance in terms of all metrics. Com-
pared with the classical method CoCoOp,MPL improves the
accuracy in base classes from 80.47% to 83.67% by adding
fine-grained image semantics to the single text prompt token.
Benefiting from themutual prompt of our FTP andTVPmod-
ules, MPL enhances the generalization performance on new
classes and achieves an average gain from 71.69% to 76.48%
on 11 datasets. When taking into account both the base and
novel classes, MPL shows an absolute average gain of 3.88%
over CoCoOp.

We provide a detailed comparison of CoCoOp and our
method of per-dataset improvement in Fig. 5. Our approach
gains significant improvements over CoCoOp in both seen
and unseen classes on 10 out of 11 recognition datasets.
Surprisingly, our method significantly improves CoCoOp
by more than 10% in unseen classes on EuroSAT and
FGVCAircraft datasets. Table 6 presents the extra param-
eters and computation cost of different prompt learning
approaches. Compared with the latest method MaPLe, MPL
achieves higher performance but introduces fewer GFLOPs
and parameters. It is because we only use a single class token
as input in the attention mechanism, while MaPLe increases
the number of tokens in each layer of the original model.
Last, we achieve new state-of-the-art results on the base-to-
new classes generalization task compared to the conference
version CTP+TFT (Long et al., 2023b).

5.3 Few-Shot Classification

Although CoCoOp solves CoOp’s poor generalization abil-
ity on new classes, its average performance on base classes
drops from 82.69% to 80.47%. We further conduct the few-
shot classification experiment and report results in Table 2.
It is obvious that CoCoOp decreases CoOp by 2.49% on
few-shot classification. The above experiments indicate that
although CoCoOp enhances the inter-class generalization, it
sacrifices the intra-class discrimination ability. In compari-
son, our method surpasses baseline methods on all datasets

on few-shot classification. Significantly our method outper-
forms CoCoOp by 10.13%, 9.91%, and 9.72% on EuroSAT,
Flowers102, and StanfordCars, respectively, and the average
improvement over 11 datasets is 5.56%. Our method also
achieves about 2% improvement on the challenging dataset
of ImageNet. Therefore, our methodMPL not only enhances
the inter-class generalization, but also improves the intra-
class discriminative ability.

5.4 Cross-Dataset Transfer

Our method has been shown to have excellent generalization
ability in a single dataset.We further evaluate the transferabil-
ity of our method onmore challenging cross-dataset tasks. In
this setting, we train multi-modal prompts for 1000 classes
on ImageNet. The effectiveness of the learned prompts is
then tested on 10 datasets covering general and fine-grained
image classification, scene recognition, and texture classifi-
cation. As shown in Table 3, compared to CoCoOp,MPL has
an improvement on 8 out of 10 target domains and achieves
the best average accuracy on the 11 datasets. Furthermore,
MPL convincingly performs over the recent state-of-the-
art MaPLe by 0.84% on average accuracy. This suggests
that the mutual prompt of FTP and TVP modules facilitates
better generalization for cross-dataset transfer. Finally, we
further improve the performance of the conference version
CTP+TFT (Long et al., 2023b) on the cross-dataset transfer
task.

5.5 Domain Generalization

Domain generalization trains a model on source data and
evaluates its generalization ability on a target domain that
is different but related to the source domain. To this end,
we train the model on the few-shot ImageNet data and test
themodel on four ImageNet variants, including ImageNetV2
(Recht et al., 2019), ImageNet-Sketch (Wang et al., 2019),
ImageNet-A (Hendrycks et al., 2021b), and ImageNet-R
(Hendrycks et al., 2021a). The experiment results are sum-
marized in Table 4.We can clearly see that ourMPLperforms
best on all target datasets. The promising performance shows
that our MPL can not only improve the discriminative ability
on the source domain data but also enhance the generalization
of the target domain. In contrast, althoughCoCoOp improves
the generalization of the target domain, it weakens the dis-
criminative ability of the source domain data. It verifies that
our MPL is more domain-generalizable. Last, we achieve
new state-of-the-art results on the domain generalization task
compared to the conference version CTP+TFT (Long et al.,
2023b).
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Table 4 Results (%) of domain
generalization task. Each
method is trained on ImageNet
and evaluated on ImageNet
variants

Source Target
ImageNet ImageNetV2 ImageNet-Sketch ImageNet-A ImageNet-R

CLIP 66.73 60.83 46.15 47.77 73.96

CoOp 71.51 64.20 47.99 49.71 75.21

CoCoOp 71.02 64.07 48.75 50.63 76.18

UPT 72.63 64.35 48.66 50.66 76.24

CTP+TFT 72.90 64.57 49.11 50.94 76.68

Ours 72.91 64.76 49.38 51.21 76.92

Table 5 Ablation studies of our method on 11 datasets. Three ablation cases are considered: A: Ours w/o TVP w/o FTP. B: Ours w/o TVP. C:
Ours w/o FTP. TVP is the text-reorganized vision prompt, and FTP is the fine-grained text prompt

Method Average ImageNet Caltech101 OxfordPets
Base New Hos Base New Hos Base New Hos Base New Hos

A 82.69 63.22 71.66 76.47 67.88 71.92 98.00 89.81 93.73 93.67 95.29 94.47

B 81.58 73.90 77.29 76.27 69.73 72.85 97.94 94.75 96.32 95.55 97.15 96.34

C 83.36 74.59 78.50 76.43 70.84 73.53 98.85 95.18 96.98 95.14 95.62 95.38

Ours 83.67 76.48 79.71 76.81 70.85 73.71 98.64 95.31 96.95 95.48 97.65 96.55

Method StanfordCars Flowers102 Food101 FGVCAircraft
Base New Hos Base New Hos Base New Hos Base New Hos

A 78.12 60.40 68.13 97.60 59.67 74.06 88.33 82.26 85.19 40.44 22.30 28.75

B 72.34 72.89 72.61 94.62 70.90 81.06 90.36 91.61 90.98 35.15 30.94 32.91

C 77.30 72.36 74.75 98.14 78.97 87.52 90.11 91.86 90.98 39.75 31.38 35.07

Ours 76.64 74.89 75.75 98.29 75.89 85.65 90.48 91.89 91.18 41.48 34.37 37.59

Method SUN397 DTD EuroSAT UCF101
Base New Hos Base New Hos Base New Hos Base New Hos

A 80.60 65.89 72.51 79.44 41.18 54.24 92.19 54.74 68.69 84.69 56.05 67.46

B 80.56 74.41 77.36 80.63 56.37 66.35 90.17 77.68 83.46 83.84 76.46 79.98

C 81.48 77.85 79.62 81.27 58.69 68.16 93.32 73.28 82.09 85.16 74.50 79.47

Ours 81.66 77.47 79.51 81.37 61.11 69.80 93.48 82.08 87.41 85.99 79.72 82.74

Table 6 Comparisons of MPL
and previous methods in average
accuracy, extra parameters
(Params), and computation cost
(GFLOPs) on the base-to-new
generalization task

Base New Hos Params ↑ (%) GFLOPs ↑ (%)

CLIP 69.34 74.22 71.70 - -

CoOp 82.69 63.22 71.66 0.002 0.00

CoCoOp 80.47 71.69 75.83 0.03 0.00

MaPLe 82.28 75.14 78.55 2.85 1.46

CTP+TFT 83.01 75.72 79.02 2.43 0.15

MPL 83.67 76.48 79.71 2.55 1.35

5.6 Ablation Analysis

Effectiveness of each module. Our framework comprises
two key components: a fine-grained text prompt (FTP) and
a text-reorganized vision prompt (TVP). In order to evaluate
the effectiveness of eachmodule, we conduct comprehensive
ablation studieswithout FTP andTVP on 11 datasets, respec-
tively. As shown in Table 5, both FTP and TVP modules can

significantly improve the accuracy compared to the vanilla
prompt learning (CoOp), and themodel performs betterwhen
they work together. Specifically, FTP and TVP improve the
average results by 5.63% and 6.84%, respectively, and the
combination of them improves the average results by 8.05%.
It indicates that FTP and TVP components are beneficial to
learning accurate text and visual prompts. In addition, the
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Fig. 6 Different text-reorganized strategies. aThe pseudo-labelmethod
directly selects the category with the top-1 score as the pseudo-label of
the current sample according to the importance scores of different cate-
gories. b The category pooling method selects the k categories with the
highest scores according to the importance scores and averages pools
the k categories as the supervision information of the current sample. c

The token reorganization method assigns weights to tokens of different
categories according to the importance scores of different categories
and merges them into new tokens by weighted summation. d The aver-
age results of different text-reorganized strategies on the base-to-new
generalization task on 11 benchmark datasets

Fig. 7 Ablation studies on the length of prompt on the average accuracy
of the 11 datasets

mutual prompt of both modules further improves the perfor-
mance of downstream tasks.

Computational complexity analysis. Since MPL intro-
duces more computational complexity compared to CoOp
and CoCoOp, we report the accuracy, extra parameters and
computation cost in the Table 6. Since Time/GPU memory
is sensitive to different datasets, we utilize the computational
cost (in GFLOPs) to examine the efficiency. Apparently,
compared with the existing SOTA method MaPLe, MPL
achieves an average accuracy improvement of 1.16% on har-
monicmeanover 11 classification datasets and requires lower
computational cost. Unlike recent SOTA MaPLe, which
increases the number of tokens in each layer of the foun-
dation model, we only adopt a single class token as input in

the attention. Compared to our baseline CoOp, our method
demonstrates a modest increase of only a few percent in
the number of additional parameters and computation costs.
However, it remarkably leads to a substantial improvement
in generalization performance by 12.5% when evaluated on
unseen classes.

Different text-reorganized strategies. The TVP module
constructs the visual prompt by directly focusing on textual
domain knowledge. A considerable challenge is the redun-
dant and negative category semantics contained in the textual
information. The straightforward idea is to take only the cat-
egory with the top-1 score as the pseudo-label of the current
sample according to the importance scores. However, low
experimental accuracy onmost datasets leads to poor-quality
pseudo-labels. We select the k categories with the highest
scores according to the importance scores and average pool
the k categories as the supervision information of the cur-
rent sample. However, the hard approach is very sensitive to
the artificially preset K value. Therefore, we design a soft
token reorganization strategy that assigns weights to tokens
of different categories according to the importance scores
and merges them into new tokens by weighted summation.
We report the experimental result for three text-reorganized
strategies in Fig. 6. With the continuous improvement of the
text reorganization strategy, our accuracy on the three exper-
imental indicators of Base, New and Hos is also constantly
increased. It indicates our text-reorganized strategy is benefi-
cial to enhance both generalization and discriminative ability.

Text prompt context length. Fig. 7 shows the influence
of the context length on the average accuracy of the 11 image
recognition datasets. For fair comparison, we adopt random
initialization for the context tokens of different lengths. The
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Fig. 9 Effect of different initialization of text prompts

differences in the base classes are fairly small, whereas in the
new classes, the models with a longer context length clearly
perform better, inconsistent with the findings in CoCoOp
(Zhou et al., 2022a). From Fig. 7, we observe that using 6
randomly initialized context tokens is marginally better than
using other properly initialized context tokens. Furthermore,
we observe that excessive context lengths hurt performance,
which may be attributed to overfitting due to more parame-
ters being learned. All in all, choosing an appropriate context
length requires a balance between discriminative perfor-
mance and generalization ability.

Visual prompt location. Following VPT (Derakhshani et
al., 2022), we ablate the effect of three different insertion
locations on the final performance in Fig. 8. i) Prepend-
embedding: prepend prompts to the sequence of the image
patch embeddings. ii)Add-embedding: addprompts element-
wise to image patch embeddings, keeping the transformer’s
input sequence length constant. iii) Add-pixel: add prompts
element-wise to image patches in the pixel level instead
of inserting the prompts as latent vectors. We observe that
the add-embedding location generally outperforms the other
visual prompt locations. In particular, the add-pixel location
significantly reduces the experimental accuracy. This sug-
gests that prompts are more accessible to learn task-relevant
signals in the latent input space rather than the pixel space.

Text prompt initialization. The zero-shot performance
of CLIP (Radford et al., 2021) is sensitive to hand-crafted
prompts. We want to know whether artificially initializing
prompts have a large influence on the performance of learn-
able prompt tuning. Therefore,we conduct extensive ablation
studies on different datasets to compare a commonword vec-
tor initialization “a photo of a [CLASS]” with the random
initialization. Figure9 reports the base-to-new generalization
results on 10 datasets. We observe that the random initial-
ization outperforms the word vector initialization on average
accuracy.However, each dataset has a different result, and the
word vector initialization of prompts also provides compet-
itive performance. It indicates that learnable prompt tuning
has learned satisfying text prompts with few-shot domain
knowledge.

Comparison of different structure designs. To further
provide an in-depth analysis of our mutual prompt learn-
ing, we further compare two vanilla structures and two
task-oriented strategies: (1) MLP-PL: the image features are
forwarded to a block of Linear-ReLU-Linear, borrowed from
(Zhou et al., 2022a), and then added to the text for aug-
menting it. (2) MLP-FT: the text prompts are forwarded to
the Linear-ReLU-Linear block and then added to the image
for augmenting it. (3) CTP: (Long et al., 2023b) proposes
class-aware text prompts which generate text prompts based
on task-relevant image semantics to avoid semantic ambigu-
ity brought by existing approaches. (4) TFT: (Long et al.,
2023b) proposes text-guided feature tuning, which leverages
text information to guide the image branch to paymore atten-
tion to the task-related representations. We report the results
of the different designs in Table 7. In text prompt learning,
we observe that the CTP and FTP modules achieve signif-
icant performance gains compared to the MLP-PL block.
It demonstrates that our design of fine-grained text prompt
effectively aligns different text prompt tokens with distinct
visual local features rather than the single global features of
the MLP-PL block. Noteworthy, compared with CTP, FTP
not only improves performance but also is more efficient
and parameter-free. In visual prompt learning, it is evident
that since the TFT and TVP modules utilize text informa-
tion to construct the visual prompt, the accuracy increases by
1.30% and 2.56% over MPL-FT, respectively. Furthermore,
compared with TFT, TVP further improves performance by
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Table 7 Comparison of
different structures for text and
visual prompt learning

Text prompt learning Visual prompt learning Accuracy (%)
MPL-PL CTP FTP MPL-FT TFT TVP

71.66 (CoOp)

� 75.83 (+4.17)

� 76.64 (+4.98)

� 77.29 (+5.63)

� 75.94 (+4.28)

� 77.24 (+5.58)

� 78.50 (+6.84)

� � 77.05 (+5.39)

� � 79.02 (+7.36)

� � 79.71 (+8.05)

The average results of harmonic mean of from-base-to-new generalization task on 11 datasets are reported.
In compared to our attention design in text and visual prompt modules, MLP-PL and MLP-FT are designed
using the Linear-ReLU-Linear block setting of CoCoOp (Zhou et al., 2022a), CTP and TFT are designed
using class-aware text prompt and text-guided feature tuning modules of CTP+TFT (Long et al., 2023b)
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Fig. 10 Sensitivity analysis of α and β, with base, new, and hos metrics, on UCF101 (a, b) and Caltech101 (c, d) datasets

Table 8 The nearest word for
each of the 16 learnable text
tokens learned by MPL

# OxfordPets StanfodCars Flowers102 Food101 FGVCAircraft

1 Flyeagles Shut Stone Meat Purely

2 Coat Automatic Resolution N/A Sarcastic

3 Insta Door Tane Coles Randomly

4 Weather Ka Homegrown Wh Maybe

5 Nir Main Surrounds Slices Specifically

6 Rag Both Daniels Homemade N/A

7 Haz Multiple Sights Spring Exactly

8 Bur Sheikh Frameworks Flat Towards

9 Tur Batteries Burne Gred Transferred

10 Coscino dca N/A Spag React

11 Physis Unique Segments Grit Vie

12 Marsh Large Yellow Tor Fuse

13 Brindle N/A Quarter Dant N/A

14 Nuke Reality Ton Vised Turb

15 N/A Du Ding N/A Pre

16 Ated Power Leaves Cleans Promos

N/A means non-Latin characters
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removing the redundant and negative category semantics
contained in the textual information. In addition, we find
that combining MLP-PL & MLP-FT, CTP & TFT, and FTP
& TVP can both improve the results compared with using
either of them. It indicates that both text prompt learning and
visual prompt learning are essential to achieve better results.

Sensitivity analysis. In Fig. 10, we investigate the sensi-
tivity of two hyper-parameters: α and β of Equation (14).
α and β are adopted to weigh the importance of TVP and
FTP modules, respectively. When α and β equals 0.0, the
model is equivalent to vanilla prompt learning (CoOp). As
α and β increase, the prompted model is encouraged to pay
more attention to the general knowledge. As a result, the
generalization performance (New) will increase while the
discrimination accuracy (Base) drops and the overall per-
formance (Hos) gradually increases. In addition, the best
performance is achieved when α and β equals 1.0.

Interpreting of text prompts. Learnable prompts are dif-
ficult for humans to understand since they transform the
context vector distribution from discrete to continuous. Fol-
lowing CoOp, we visualize the text prompts searching the
words closest to the learned text tokens in the embedding
space. As shown in Table 8, we observed that the nearest
words for a few learnable tokens are somewhat related to the
corresponding dataset, such as “flyeagles” from OxfordPets,
“yellow” from Flowers102, and “slices” from Food101. It
demonstrates that each learnable token may focus on one or
a subset of characteristics of the corresponding dataset.

6 Conclusion

In this paper, we propose a mutual prompt learning (MPL)
approach consisting of a fine-grained text prompt (FTP)
and a text-reorganized vision prompt (TVP) to re-activate
the task-related representations abilities of VLMs. The FTP
decomposes the single global image features into several
finer-grained semantics to fuse text and image tokens at the
same granularity. On the other hand, the TVP reorganizes
the text descriptions of the current image and enables a more
precise construction of the visual prompt by synergistically
leveraging both image and text knowledge. In addition, we
exploit TVP and FTP to mutually prompt and fully unleash
the potential representation capabilities of both modalities.
As a result, our method achieves excellent performance on
11 classification benchmarks and outperforms other prompt
tuning approaches by a large margin. We hope that MPL can
be a strong baseline for VLMs adaptation.

Considering that MPL further increases the training costs,
a direct and effective approach is to reduce the computational
complexity of the model. Inspired by efficient vision trans-
former methods (Liang et al., 2022; Xu et al., 2022; Meng et
al., 2022; Long et al., 2023a), we can design a token pruning

strategy for the visual encoder. Specifically, we can decouple
the attentive and inattentive tokens based on the class token
attention. In addition to preserving the most discriminative
local tokens, we merge similar inattentive tokens and match
homogeneous attentive tokens tomaintain themodel’s gener-
alization ability. This will improve training efficiency while
maintaining model performance.

Limitations. Similar to CoCoOp (Zhou et al., 2022a),
MPL learns image-conditioned text prompts, which may
slow down the training speed. This happens because image-
conditioned text prompts require an independent forward
pass of instance-specific prompts through the text encoder for
each image, rather than just a single forward pass of prompts
through the text encoder for any size batch. We will to solve
this efficiency issue in the future work.
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