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ABSTRACT

In contemporary machine learning, enhancing model generalization
through diversified datasets is essential. Yet, collecting additional
data often faces prohibitive costs and privacy constraints, with no
guarantee of improved diversity. In this paper, we propose Domain-
Diff, featuring a pivotal Word-to-Image Mapping (WIM) mecha-
nism. WIM constructs precise mapping between prompts and im-
ages, where the prompts only comprise style and class words. It
generates intra-domain data by employing identical prompts to pro-
duce source-style images, preserving style and class consistency,
thereby diversifying the dataset. Expanding on this innovation, we
fuse multiple WIMs and use the prompts with multiple style words
to create inter-domain data, which captures a fusion style of multiple
source domains. Inter-domain data significantly widens the training
data distribution, amplifying diversity. Experimental results demon-
strate DomainDiff’s transformative potential, improving model per-
formance on real-world data compared to using only real data. These
findings highlight DomainDiff’s utility in enhancing generalization
across diverse real-world scenarios.

Index Terms— Domain generalization, image generation, data
distribution shift, model robustness

1. INTRODUCTION

One of the foremost challenges in deep learning pertains to the
deterioration of model performance when confronted with out-of-
distribution (OOD) data. Consequently, there has been a heightened
focus on research endeavors [1, 2] aimed at elevating generalization
performance and bolstering reliability. Recent investigations [3, 4]
have underscored the pivotal role of comprehensive and diversified
datasets in augmenting the generalization capabilities of machine
learning models. Nonetheless, aggregating and curating large-scale
datasets from diverse real-world sources entail substantial human
and financial resources and paramount data privacy considerations.
These constraints invariably confine the scope of training data avail-
able for real-world applications, presenting a formidable challenge
in harnessing data diversity from authentic sources to cultivate a
more adaptable model.

Recently, text-to-image diffusion models, such as Stable Diffu-
sion [5] and Imagen [6], have undergone training on billion-scale
datasets [7], exhibiting the remarkable ability to generate lifelike
images from textual inputs. Leveraging the impressive capabilities
of these generative models, a compelling question arises: Could
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Fig. 1: DomainDiff generates intra-domain data and inter-domain
data to boost generalization. The former has the same style as one
source domain, and the latter has a mixed style of multiple source
domains.

we use generated data to augment dataset diversity to boost gen-
eralization performance? In our evaluation of text-to-image diffu-
sion models, with a particular focus on Stable Diffusion, we have
unveiled several noteworthy limitations: (1) The diversity of gener-
ated images heavily hinges on using textual prompts. Using fixed
and simplistic text prompts can significantly restrict diversity within
the same image category. (2) Owing to the polysemy of certain
words, generated images may inadvertently fall into different cate-
gories than the original data. (3) The stylistic variations in generated
images remain limited by pre-training constraints.

To tackle these challenges, we introduce DomainDiff, a novel
data synthesis method that incorporates the Word-to-Image Map-
ping (WIM) module, meticulously crafted to ensure consistency in
style and class, all conditioned on corresponding words. Domain-
Diff leverages style words and class names as textual prompts in the
generation process, alleviating the need for extensive manual text
design. The WIM module excels at reconstructing the mapping be-
tween style words, class names, and images within each domain,
effectively resolving issues related to polysemy. This enhancement
enables us to convey a style with a single word precisely. With this
accurate word-to-image mapping, DomainDiff effectively generates
data that faithfully captures the stylistic essence of the source do-
mains, which we refer to as intra-domain data. Moreover, by amal-
gamating WIMs trained across multiple domains, DomainDiff gains
the capability to create inter-domain data characterized by a fusion
of unique styles. This approach significantly enhances dataset di-
versity, broadening its scope. These data exemplify the distinctive
styles as illustrated in Fig. 1.

To prove that the data synthesized by DomainDiff can boost
the generalization performance, we assess models trained on this
data across three tasks: multi-source OOD, single-source OOD, and
transfer learning, including 13 datasets. Our experiments confirm
that DomainDiff-generated data effectively reduces the distribution
gap between training and testing data, enhancing model generaliza-
tion within and across domains. In summary, our contributions can
be summarized as follows:

• We highlight three limitations of the data generated by Sta-
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bleDiff: misinterpretation, inaccurate word-to-image map-
ping, and limited diversity.

• We propose a DomainDiff data generation method, which re-
constructs the word-to-image mapping with simple and fixed
prompts. DomainDiff accurately generates intra-domain data
that maintains consistency with the style of the source do-
main. Furthermore, DomainDiff employs weight fusion to
produce innovative styles and generates inter-domain data
that bridge the divide between disparate source domains.

• In multi-source OOD, single-source OOD, and transfer learn-
ing three tasks, DomainDiff synthesized data significantly
boost the performance of models across 13 datasets.

2. RELATED WORKS

Out-of-domain generalization. In the realm of out-of-domain gen-
eralization [8, 9, 10, 11], the primary objective is to train a model
capable of robust performance on unseen data. Traditionally, data
generation methods [12, 13, 14, 15] employed in the OOD task have
largely focused on enhancing dataset diversity through modifications
to the original data. These modifications often involve techniques
such as interpolation, cropping, and other transformations. Most
of these methods have relied on two prevalent model architectures:
generative models like Variational Auto-encoders (VAE) and Gener-
ative Adversarial Networks (GAN). However, these approaches are
primarily constrained to manipulating existing input data. Conse-
quently, they cannot generate a substantial volume of diverse, en-
tirely novel data. This limitation poses challenges when attempting
to scale datasets effectively.

Text-to-image diffusion models. These generative models are
exemplified by Stable Diffusion [5] (StableDiff), known for their
remarkable ability to produce high-quality images. These models
operate by gradually introducing Gaussian noise to data and then
recovering the original data through a series of intricate processes.
In the realm of conditional diffusion models, this reverse process is
conditioned on specific signals, such as class names and style words,
enabling the generation of images tailored to particular conditions.
During the generation phase, employing different textual descrip-
tions yields a rich spectrum of images, showcasing the diversity-
promoting potential of these models. Recent research efforts [6, 16]
delve into the effectiveness of controlling image attributes using text
inputs within diffusion models, further enriching the diversity of
generated images. However, it’s worth noting that manually speci-
fying appropriate prompts for each class becomes impractical as the
number of class names increases. Furthermore, inadequate prompt
design during the training phase can generate images that lack di-
versity or even misrepresent their intended class, underscoring the
limitations of text-to-image diffusion models.

Learning from synthetic data. Employing synthetic data to
train models and boost their performance is common in various ap-
plications. In exploring the diffusion model for OOD tasks, we
identify two related works that share certain aspects with our ap-
proach. Sariyildiz et al. [16] introduced ImageNet-clone, where they
leveraged the Stable Diffusion model to generate a dataset of equal
size. They employed complex prompts to generate different data
for boosting classification models’ generalization and transfer learn-
ing performance. However, the complex prompts necessitate exten-
sive manual testing to select suitable prompts to synthesize data,
showcasing the advantages over real data. Azizi et al.[17] focus
on generating realistic data with complex prompts by fine-tuning
the diffusion model. In contrast, DomainDiff stands out by spe-

SyntheticSynthetic

RealReal

(a)  p = “Bank”

SyntheticReal

(c)  p = “Alarm Clock”

(b)  p = “Sketch Dog”

SyntheticReal

(c)  p = “Alarm Clock”

Fig. 2: Qualitative examples. Under the condition of minimal text
dependence, we present three main limitations of the current text-
to-image models. (a) Misinterpretation due to word ambiguity; (b)
Limited understanding of adjectives; (c) Limited diversity of the
same object with the fixed prompt.

cializing in creating highly diverse images while minimizing text
dependencies. It offers the unique capability to generate both intra-
domain and inter-domain data. Intra-domain data maintains the style
of the source domain, while inter-domain data introduces entirely
new styles. Moreover, DomainDiff achieves this with minimal re-
liance on textual prompts, making the process less labor-intensive.

3. DOMAINDIFF

3.1. Generation Capability Check

The StableDiff model, renowned for its image generation capabil-
ities, has demonstrated remarkable potential in generating images
from textual descriptions. However, our investigation into StableD-
iff’s generation capabilities has unearthed three notable weaknesses
that hinder its application in OOD tasks: (i) Misinterpretation
due to word ambiguity. StableDiff struggles when confronted
with words carrying multiple meanings or ambiguous contexts. For
instance, the word ”Bank” may be misinterpreted as a riverbank
instead of a financial institution, adversely impacting both clas-
sification and generalization, as shown in Fig. 2 (a). (ii) Limited
understanding of adjectives. Without complex prompts, StableDiff
could only apply filters to images of real styles based on adjectives
rather than achieving the simplicity and abstraction of real data, as
illustrated in Fig. 2 (b). (iii) Limited diversity of the same object
with fixed prompt. Even when the words describing the target
have no ambiguity, the generated images are not as rich in variety
as real-world samples. As shown in Fig. 2 (c), the upper images
demonstrate the diversity of alarm clocks in the real world. How-
ever, The lower part of the image consists of generated images in
which the alarm clocks have only a single design. These limitations
indicate that using text-to-image models blindly could be very risky.
Especially when generating data on a large scale, not every incor-
rect image can be detected and removed. DomainDiff constructs a
correct word-to-image mapping and uses domain fusion to enhance
the diversity of synthetic data, which effectively overcomes the
limitations and boosts the generalization performance.

3.2. Word-to-Image Mapping

The three weaknesses discussed above stem from the lack of proper
word-to-image mapping. Misinterpretation Problem: StableDiff
struggles to map class names to the correct images in the current
dataset. Limited Understanding of Adjectives: StableDiff lacks
sufficient training to capture the correct mapping between adjec-
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Table 1: Results of multi-source OOD task. ( ∗:StableDiff, •:Real, †:Intra-domain, ‡:Inter-domain, bold: best results).

Algorithm PACS OfficeHome
A C P S Avg A C P R Avg

ERM• 82.7 ± 0.9 79.1 ± 0.9 95.3 ± 0.4 75.9 ± 0.5 83.2 57.0 ± 1.1 50.5 ± 0.9 70.9 ± 0.0 74.3 ± 0.6 63.2
Mixup• 83.9 ± 0.5 74.4 ± 1.9 94.8 ± 0.1 75.3 ± 0.9 82.1 55.7 ± 0.7 50.6 ± 0.3 73.4 ± 0.4 73.7 ± 0.2 63.3
CORAL• 84.0 ± 1.4 78.7 ± 1.4 94.9 ± 0.3 75.3 ± 2.2 83.2 54.4 ± 0.9 51.1 ± 0.6 71.6 ± 1.0 73.5 ± 0.5 62.7
ERM•∗ 83.4 ± 0.7 80.1 ± 0.9 93.9 ± 0.6 74.8 ± 0.4 83.0 54.3 ± 0.4 50.8 ± 1.1 72.5 ± 0.5 73.1 ± 0.7 62.7
Mixup•∗ 82.4 ± 0.6 81.6 ± 0.4 93.6 ± 0.0 75.3 ± 1.5 83.2 55.6 ± 0.5 50.2 ± 0.6 72.6 ± 0.1 74.9 ± 0.3 63.3
CORAL•∗ 79.7 ± 0.5 84.4 ± 0.0 94.7 ± 0.1 75.5 ± 1.8 83.6 55.8 ± 0.6 51.0 ± 0.4 72.8 ± 0.4 74.2 ± 0.1 63.5
ERM•† 83.5 ± 1.6 79.6 ± 0.7 95.7 ± 0.3 79.7 ± 2.0 84.6 55.4 ± 0.0 48.7 ± 0.9 74.3 ± 0.1 76.3 ± 0.0 63.7
Mixup•† 85.7 ± 0.7 80.8 ± 1.0 95.8 ± 0.6 80.2 ± 0.5 85.6 57.1 ± 0.4 49.1 ± 1.3 74.5 ± 0.6 74.5 ± 0.5 63.8
CORAL•† 84.3 ± 0.7 80.3 ± 0.9 95.2 ± 0.3 80.5 ± 2.2 85.1 57.9 ± 0.3 49.8 ± 0.2 72.2 ± 0.0 75.0 ± 0.3 63.7
ERM•†‡ 84.9 ± 1.6 82.9 ± 0.0 95.5 ± 0.0 79.0 ± 0.9 85.6 57.6 ± 0.4 49.2 ± 0.6 73.0 ± 0.6 75.2 ± 0.9 63.7
Mixup•†‡ 87.2 ± 1.0 80.3 ± 1.5 96.5 ± 0.2 78.5 ± 0.8 85.6 60.0 ± 1.2 50.7 ± 1.1 74.7 ± 0.3 75.9 ± 0.5 65.3
CORAL•†‡ 87.5 ± 1.3 83.6 ± 0.0 95.4 ± 0.6 81.5 ± 0.3 87.0 59.5 ± 1.7 51.9 ± 0.8 74.8 ± 0.5 76.0 ± 0.4 65.6
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Fig. 3: Overview of DomainDiff. We revamp each linear layer in the
UNet by replacing it with a Word-to-Image Mapping (WIM) mod-
ule. The WIM module comprises two learnable linear layers, Md

1

and Md
2 , whose outputs as residuals are summed with the outputs of

the original linear layer.

tives and the visual characteristics of the data. Limited Diversity:
StableDiff imposes constraints that limit the diversity of shapes
associated with class names. To address these issues, we propose
the Word-to-Image Mapping (WIM) module, which aims to estab-
lish an accurate word-to-image mapping while minimizing manual
intervention in the training process. For datasets like PACS [18]
and OfficeHome [19], which are the multiple-source domain gen-
eralization datasets, we have access to only class names tc and
domain names td. So, we set a fixed prompt pd = ”td tc” for the
class c of images within the domain d. We send the images and
the prompt into the diffusion model Gd with the Word-to-Image
Mapping (WIM) module. Inspired by previous approaches [20],
WIM applies two additional layers Md

1 and Md
2 , whose outputs as

residuals are summed with the outputs of the original linear layer, as
shown in Fig. 3. The output Zoutput of each WIM can be calculated:

Zoutput = L(Zinput) + αMd
2 (M

d
1 (Zinput)). (1)

where the L is the origin linear layer in Unet, and the α is the scaling
hyperparameter. We freeze the weights of Gd except the weights of
WIMs and employ a fixed text prompt pd = ”td tc” to construct
the word-to-image mapping. The DomainDiff with WIMs trained in
domain d can generate images X̂d that share the same style but are

distinct from any data in source domain d. We donate these images
as intra-domain data, which enhances the diversity of in-distribution
data for boosting out-of-distribution generalization [21].

3.3. Domain Fusion

While intra-domain data effectively enhances the diversity within
source domains, a style gap often persists among different source
domains, leaving the data within these gaps untapped. This hidden
data between distinct source domains holds the potential to enrich
the overall training dataset further, making it imperative to explore
and exploit this resource. To bridge the style gap and unlock the hid-
den diversity, we introduce the concept of domain fusion. Domain
fusion involves the integration of multiple Gd models and their re-
spective domain labels td. This integration empowers us to generate
inter-domain data by sampling from the spaces between source do-
mains. For instance, let’s consider two DomainDiff models, GA and
GS , representing source domains ’Art’ and ’Sketch’, respectively.
To achieve domain fusion, we combine the Word-to-Image Mapping
(WIM) modules from both models:

MA,S
1 = βMA

1 + (1− β)MS
1 ,

MA,S
2 = βMA

2 + (1− β)MS
2 ,

(2)

Here, β represents the fusion hyperparameter. The output of the
domain fusion WIM is computed as follows:

Zoutput = L(Zinput) + αMA,S
2 (MA,S

1 (Zinput)). (3)

After fusion, the DomainDiff GA,S
inter requires the use of textual

prompts pA,S
inter = ”tA tS tc,” such as ”art sketch horse”, to

generate inter-domain images. In other words, XA,Sinter =
GA,S

inter(p
A,S
inter, ϵ), where ϵ represents random noise.

4. EXPERIMENTS

In this section, we conduct experiments to answer four main ques-
tions: RQ1: Does the synthetic data boost the multi-source OOD
performance? RQ2: Does the synthetic data boost the single-source
OOD performance? RQ3: Does the synthetic data boost the trans-
fer learning performance? RQ4: How does synthetic data boost the
generalization performance of the classification model?

Dataset. For multi-source OOD, we select the PACS [18]
and OfficeHome [19] datasets. For single-source OOD, following
the settings of ImageNet-clone [16], we consider ImageNet-100
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Table 2: Results of single-source OOD task. Top-1 and Top-5 ac-
curacy on several ImageNet datasets. IN-A is tested using only the
categories that intersect with IN-100. ( •:Real,∗:StableDiff, †:Intra-
domain, bold: best results).

Data Real:Syn IN-Val IN-V2 IN-Sketch IN-A
Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

IN-100• 1:0 87.5 93.8 78.1 92.2 37.5 58.9 26.7 62.5
IN-100•∗ 1:0.5 87.5 95.3 79.7 90.6 35.9 64.1 31.3 67.2
IN-100•† 1:0.5 89.1 96.9 81.2 93.8 39.1 62.5 32.8 73.4

Table 3: Results of transfer learning. ( •:Real,∗:StableDiff, †:Intra-
domain, bold: best results).

Data Real:Syn Aircraft Cars196 DTD EuroSAT Flowers Pets Food101
IN-100• 1:0 43.6 41.5 67.9 96.2 85.6 78.7 63.4
IN-100•∗ 1:0.5 48.7 43.7 70.2 96.2 89.6 83.3 68.1
IN-100•† 1:0.5 49.2 47.0 71.8 96.5 89.6 84.7 68.3

(IN-100) as a single source domain and use ImageNet-val (IN-
val), ImageNet-V2 (IN-V2), ImageNet-Sketch (IN-S), ImageNet-R
(IN-R), and ImageNet-A (IN-A) as five target domains in our experi-
ments. For transfer learning, We evaluate the transfer performance of
our models on eight datasets: Aircraft [22], Cars196 [23], DTD [24],
EuroSAT [25], Flowers [26], Pets [27], and Food101 [28].

Implementation details. ResNet50 is used as the backbone net-
work for all models in all experiments reported in this paper. We use
publicly available DomainBed [29] for multi-source OOD. We pri-
marily test three algorithms: Empirical Risk Minimization (ERM),
Inter-domain Mixup (Mixup) [30], and Deep CORrelation ALign-
ment (CORAL) [31]. We use TREX [32] to evaluate models’ single-
source OOD and transfer learning performance. For these two tasks,
we follow the settings of previous works [16], with text control pa-
rameters set to 2.0 and 50 iterations for inversion. Besides, we use
”*” as the domain label for training WIMs in IN-100. We use the
publicly available StableDiff on HuggingFace, with the scaling
hyperparameter α set to 1.0. In the domain fusion phase, the fusion
hyperparameter β is set to 0.5 to balance the quality and diversity of
the generated images.

RQ1: boosting multi-source OOD task performance. We use
DomainDiff to synthesize equal amounts of intra-domain and inter-
domain data. We train the classification model with synthetic and
real data on PACS and OfficeHome. As shown in Table 1, when
the model is trained using images generated by the StableDiff, there
is no significant improvement compared to models trained exclu-
sively on real data. In contrast, using inter-domain data leads to
noticeable enhancements in model performance. What’s even more
significant is that when inter-domain images are introduced into the
training data mix, the resulting models demonstrate a remarkable im-
provement in performance on both datasets. The accuracy of ERM,
Mixup, and CORAL improved by an average of 1.8, 2.2 and 2.8
points on the two datasets, respectively.

RQ2: boosting single-source OOD task performance. Ex-
panding our investigation further, we extend our study to the harder
scenario: single-source domain task. ImageNet is a typical dataset
where all training data share the same authentic style. We trained
a classification model on ImageNet and assessed its generalization
performance across several test sets with significantly distinct styles.
As shown in Table 2, for test domains with similar styles (IN-val, IN-
V2), DomainDiff notably boosts the model’s generalization perfor-
mance and gets 89.1% and 81.2% Top-1 accuracy. Furthermore, for
test domains encompassing diverse styles (IN-Sketch, IN-A), Do-
mainDiff outperforms StableDiff to generate more useful data to get
39.%1 and 32.8% Top-1 accuracy.

RQ3: boosting transfer learning performance. As a step for-
ward, we evaluate the transfer learning performance of the model
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Intra-C Intra-P Intra-S Inter-C&P Inter-C&S Inter-P&S

Fig. 4: Diverse data synthesized by DomainDiff.

(a) Real (b) Intra-domain

(c) Inter-domain (d) Intra-domain & Inter-domain

Fig. 5: Distribution comparison of testing and training data in feature
space with the Sketch as the target domain.

trained in the single-source domain task. As shown in Table 3, the
model trained with DomainDiff generated data has a better ability
to extract representations, which suits new classes, even new down-
stream tasks, and the model leads by an average of 1.0 points across
seven datasets.

RQ4: DomainDiff reduces distribution gap. We present
examples of both intra-domain and inter-domain data in Fig. 4.
Intra-domain data maintains the original domain-specific style,
while inter-domain data seamlessly blends multiple source domain
styles. The complementarity of these styles is evident in the feature
space’s data distribution, as illustrated in Fig. 5. Intra-domain data
exhibits a wide distribution that closely aligns with the target do-
main’s data distribution. Furthermore, incorporating inter-domain
data expands the training data distribution even further. Importantly,
it’s worth noting that inter-domain and intra-domain data distri-
butions emphasize different aspects, underscoring the importance
of generating inter-domain data within the context of multi-source
domain generalization.

5. CONCLUSION

In this paper, we propose the DomainDiff, which reconstructs the
word-to-image mapping in each domain to ensure consistency in
styles and categories conditioned on corresponding words. Domain-
Diff relies on only one style word and one class name as textual
prompts to minimize the need for manual text design. Experimen-
tal results demonstrate that both intra-domain and inter-domain data
generated by DomainDiff can narrow the distribution gap between
training and testing data, leading to improved generalization perfor-
mance.
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