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Abstract

Deep learning has achieved tremendous success in re-
cent years, but most of these successes are built on an
independent and identically distributed (IID) assumption.
This somewhat hinders the application of deep learning to
the more challenging out-of-distribution (OOD) scenarios.
Although many OOD methods have been proposed to ad-
dress this problem and have obtained good performance
on testing data that is of major shifts with training dis-
tributions, interestingly, we experimentally find that these
methods achieve excellent OOD performance by making a
great sacrifice of the IID performance. We call this find-
ing the IID-OOD dilemma. Clearly, in real-world applica-
tions, distribution shifts between training and testing data
are often uncertain, where shifts could be minor, and even
close to the IID scenario, and thus it is truly important
to design a deep model with the balanced generalization
ability between IID and OOD. To this end, in this paper,
we investigate an intriguing problem of balancing IID and
OOD generalizations and propose a novel Model Agnostic
adaPters (MAP) method, which is more reliable and effec-
tive for distribution-shift-agnostic real-world data. Our key
technical contribution is to use auxiliary adapter layers to
incorporate the inductive bias of IID into OOD methods. To
achieve this goal, we apply a bilevel optimization to explic-
itly model and optimize the coupling relationship between
the OOD model and auxiliary adapter layers. We also the-
oretically give a first-order approximation to save compu-
tational time. Experimental results on six datasets success-
fully demonstrate that MAP can greatly improve the perfor-
mance of IID while achieving good OOD performance.

1. Introduction
Deep learning has achieved unprecedented success in

various applications of computer vision, e.g., image clas-
sification [15, 17, 18], but most of these successes are
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Figure 1. Comparison of OOD and IID accuracy of OOD, IID and
our proposed MAP methods on ColoredMNIST. HM is the har-
monic mean of IID and OOD accuracy. All OOD methods achieve
high OOD performance with the sacrifice of IID accuracy com-
pared with ERM (i.e., an IID method). MAP achieves balanced
generalization by incorporating IID inductive bias into OOD gen-
eralization learning. More results are shown in Table 1.

based on an independent and identically distributed (IID)
assumption, i.e., training and testing data are drawn from
the same distribution [41, 16]. However, out-of-distribution
(OOD) shifts between training and testing data are usually
inevitable in the real world due to the widespread existence
of unobserved confounders or data bias [46, 8]. Under such
circumstances, deep models trained by empirical risk mini-
mization (ERM) [51] with the IID assumption usually suffer
from poor performance on OOD data. Therefore, it is im-
portant to improve the OOD generalization of deep models.

Recently, many OOD methods have been proposed to
learn representations or predictors that are invariant to dif-
ferent distributions (or named environments) by introducing
various regularizers [3, 4, 44, 1, 26, 2, 34, 64, 63, 50]. Al-
though these methods achieve good OOD performance on
testing data that is of major distribution shifts with training
data, we experimentally found that they would significantly
damage the performance on IID (with nearly no shift dis-
crepancy) or minor shift data. We implement some repre-
sentative OOD methods in both OOD and IID scenarios on
ColoredMNIST and show results in Figure 1. We have an
interesting observation that these methods have significant
OOD accuracy but lower IID performance compared with
the IID method (e.g., ERM) with higher IID performance
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Figure 2. Comparison of running means and variances of Batch-
Norm layer on ColoredMNIST. IID and OOD methods learn dif-
ferent inductive biases and perform well in either IID or OOD sce-
narios. The proposed MAP method achieves balanced generaliza-
tion performance by capturing both kinds of inductive bias.

but lower OOD accuracy. A possible reason for causing this
phenomenon is that many OOD methods extract invariant
features while possibly losing some information that con-
tributes to IID generalization. Next, we explore this phe-
nomenon from the perspective of inductive bias learned by
different IID and OOD methods inspired by [36].

In Figure 2, following [53], we visualize channel-wise
BatchNorm (BN) statistics of the 4-th layer as the inductive
bias (other layers have similar observations). The inductive
bias, i.e., running means and variances, of IID and OOD
methods are significantly different, i.e., IID (OOD) methods
are routed to BNIID (BNOOD). As pointed out by [2, 32],
ERM extracts easy-to-learn variant features (e.g., color on
ColoredMNIST) in training distributions and generalizes
well to testing data with the same distribution. In compar-
ison, these OOD methods adopt regularizers to encourage
the model to extract hard-to-learn invariant features (e.g.,
digit on ColoredMNIST) and improve the performance of
testing data that differ significantly from training distribu-
tions. Moreover, the regularizer guides the OOD model
in different optimization directions compared with the IID
method, which causes good OOD accuracy with low IID re-
sults. The finding is named as the IID-OOD dilemma. Both
IID and OOD methods can only perform well in a specific
scenario (IID or OOD), which limits their real-world ap-
plications with uncertain distribution shifts. Therefore, this
observation motivates us to ask: is it possible to design a
model with a balanced performance between IID and OOD
generalizations in the IID-OOD dilemma?

In this paper, we take a step forward to propose a novel
Model Agnostic adaPters (MAP) method that achieves bal-
anced generalization performance in both IID and OOD
evaluations. Specifically, we insert auxiliary adapter layers
(AALs) in the OOD model to learn variant features with the
inductive bias of the IID scenario, while keeping the ability

to extract invariant features with the inductive bias of the
OOD scenario. Training processes of the OOD model and
AALs are viewed as two kinds of tasks: the OOD model
learns OOD knowledge and AALs extract IID information.
To achieve this, we formulate the learning into a bilevel op-
timization (BLO) problem. In the inner level, we optimize
the OOD model with AALs by using an OOD loss. In the
outer level, we utilize the IID criterion evaluated on the val-
idation set based on the optimized OOD model in the inner
level as the outer objective to guide the training of AALs.
We alternatively perform the inner level and outer level and
finally obtain a set of optimal parameters for the adapter and
OOD model. To save computational time and memory, we
theoretically give a first-order approximation of BLO. Note
that AALs are model-agnostic and can be plugged into an
arbitrary OOD method. Experiments evaluate the effective-
ness of MAP, which improves the trade-off ability of OOD
methods (see the HM metric in Figure 1) by capturing the
inductive bias of both IID and OOD scenarios in Figure 2.
Our main contributions are summarized as follows:

• We investigate a problem called the IID-OOD
dilemma, i.e., most OOD (or IID) methods achieve
good OOD (or IID) performance with a sacrifice of IID
(or OOD) accuracy, which is beyond the capability of
these methods in real-world data with uncertain shifts.

• We propose a simple yet effective Model Agnostic
adaPters (MAP) method to simultaneously learn in-
ductive biases of both IID and OOD. To achieve this,
a bilevel optimization (BLO) is used to train our MAP.
Unlike the computationally intensive BLO solver, we
theoretically give a first-order approximation.

• We conduct extensive experiments across six datasets,
three model architectures, and sixteen baselines. We
show that (1) MAP balances the performance of IID
and OOD. (2) MAP is model-agnostic and can be
plugged into any OOD method. (3) MAP is able to
achieve reliable performance under various settings.

2. Related Work
Out-of-distribution generalization. To enable deep learn-
ing models to generalize to unknown data distributions, the
task of out-of-distribution (OOD) generalization aims to
train a generalizable model from one or multiple source do-
mains and make it predict well on the previously unseen tar-
get domains. To get rid of the independent and identically
distributed (IID) assumption employed by the conventional
algorithms like empirical risk minimization (ERM) [51], a
variety of OOD strategies have been proposed to overcome
distribution shifts, including regularized training [60, 26,
38, 47, 23, 54, 57], meta-learning [27, 7, 59, 22, 62], data
augmentation [55, 42], domain alignment [3, 28], causal
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learning [2, 33, 21], etc. Taking regularized training meth-
ods to extract invariant features as an example. IRM [4]
learns invariant representations with a classifier optimal to
domain changes as a regularization term. MTL [5] uses
an extended input pattern with an estimated domain em-
bedding and implements regularized learning over a repro-
ducing kernel Hilbert space. ANDMask [37] and SAND-
Mask [45] regularize the model training by updating param-
eters on the direction where gradient components have con-
sistent signs across domains. Despite the good OOD perfor-
mance these methods have achieved, we empirically found
that compared with IID methods, existing OOD methods
have a considerable sacrifice of IID to improve the OOD
performance. However, real-world testing data is uncertain,
which could even show similar statistical distributions to
IID training data. In this paper, taking a step forward, we
propose a novel method that achieves a balance between
IID and OOD performance, which allows models to better
handle uncertain and complex real-world data.
Bilevel optimization (BLO). BLO [49], also known as
learning to learn or meta-learning, focuses on training a
meta-learner that can learn how to train other models. The
episodic training strategy from MAML [11], which sim-
ulates a set of tasks and makes the model learn to gen-
eralize its learning to different tasks, has been widely
employed in OOD methods for overcoming distribution
shifts [27, 31, 40, 61, 6, 48, 52, 39, 58, 14]. As a pioneer
work, MLDG [27] makes the model learn how to generalize
to unseen domains by simulating distribution shifts with vir-
tual target data from source domains. ARM [60] optimizes
the model for effective adaptation to shift by learning to
adapt on training domains. Fish [47] augments the loss with
an auxiliary term that maximizes the gradient inner product
between domains to encourage the alignment between the
domain-specific gradients. These methods aim to improve
the OOD performance of the model by using bilevel opti-
mization (BLO), while our goal is to optimize MAP so that
it can balance the performance of IID and OOD data.

3. Preliminaries
In this section, we first formulate the problem definition.

Then, we detail the optimization processes of IID and OOD.
Problem definition. Given a dataset D := {(xi, yi)}ni=1

with n samples (xi, yi) is drawn from a joint space of X×Y .
In general, D contains the training data Dtr sampled from
the training distribution Ptr(X ,Y) and the testing data Dte

drawn from the testing distribution Pte(X ,Y). Supervised
learning methods aim to predict labels yi of xi originate
from a featurizer f(·; θ) parameterized by θ and the clas-
sifier g(·;ϕ) parameterized by ϕ, i.e., θ : X → Z and
ϕ : Z → Y . Z represents the sample feature space.
IID learning. Deep learning usually assumes that train-
ing and testing data are both IID realizations from a com-

mon underlying distribution, i.e., Ptr(X ,Y) = Pte(X ,Y).
Based on such a hypothesis, empirical risk minimization
(ERM) which minimizes the average loss on training sam-
ples could optimize the model for the testing distribution.
Specifically, ERM minimizes the following objective:

LERM (Dtr, θ, ϕ) =
1

n

n∑
i=1

ℓ(gϕ(fθ(xi)), yi), (1)

where ℓ(·, ·) is the loss function, e.g., cross entropy for im-
age classification. zi = fθ(xi) is the feature representation
and ỹi = gϕ(zi) = gϕ(fθ(xi)) is the prediction.
OOD learning. There is an OOD problem when the testing
distribution is unseen and different from the training dis-
tribution, i.e., Ptr(X ,Y) ̸= Pte(X ,Y). Specifically, fol-
lowing [4, 1], we have multiple environments (or distribu-
tions) E = {e1, e2, · · · , eE} in the sample space X × Y
with the training distribution. The correlation between the
non-sematic information (i.e., variant features) and labels
(i.e., invariant features) is unstable among different environ-
ments. Existing OOD methods learn invariant representa-
tions or predictors by introducing the regularizer. The opti-
mization process of OOD methods (IRM [4] and VERx [26]
as an example due to its simple yet effective) is as below:

RIRMv1(Dtr, θ, ϕ) =
∑
e

LERM (De
tr, θ, ϕ)

+ λ|| ▽θ,ϕ=1.0 LERM (De
tr, θ, ϕ)||22,

(2)

RV REx(Dtr, θ, ϕ) =
∑
e

LERM (De
tr, θ, ϕ)

+ λVe[LERM (De
tr, θ, ϕ)],

(3)

where Ve[L(De, ϕ)] is the variance of the loss across differ-
ent environments. Equation (2) is the optimization objective
of IRM using the fixed “dummy” classifier. Equation (3) is
the VREx optimization objective. λ ∈ [0,∞) is a hyperpa-
rameter to balance between the ERM and regularizer loss.

4. Methodology
To address the interesting problem of the IID-OOD

dilemma, in this section, we propose a model-agnostic
adapters (MAP) method by introducing auxiliary adapter
layers (AALs) in the OOD model. Specifically, as illus-
trated in Figure 3, we incorporate AALs into the OOD
model to learn the inductive bias of IID and OOD data by
using a bilevel alternating way. In the following subsec-
tions, we detail the bilevel optimization (BLO) process and
the specific form of our proposed auxiliary adapter layers.

4.1. Bilevel Optimization

As shown in Figure 2, OOD and IID models learn differ-
ent inductive biases from training data to improve the gen-
eralization in testing data. Under such circumstances, these
models cannot achieve good performance under both IID
and OOD. To improve the trade-off of IID and OOD, we
design MAP to help OOD models learn IID knowledge by
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Figure 3. Method overview. (1) In the inner level (i.e, blue arrow →), the OOD model is optimized to ω∗ by using the batch Bω sampled
from training data and the OOD loss R, where each layer of the OOD model incorporates the proposed auxiliary adapter layers (AALs),
i.e., (ωl, αl) with l ∈ [1, · · · , L] (see Equation (5)). (2) In the outer level (i.e., green arrow →), the updated OOD model ω∗ is used to
optimize AALs with the batch Bα sampled from validation data according to the feedback from the ERM loss LERM (see Equation (4)).

integrating AALs into OOD models. Our goal is to let OOD
models extract invariant features (e.g., object information)
that help OOD generalization while also focusing on variant
features (e.g., background) that improve IID performance.

To this end, the learning paradigm of AALs and OOD
models is viewed as two kinds of tasks: ❶ OOD models
learn OOD inductive bias, and ❷ AALs recognize IID in-
ductive bias. Moreover, we interpret the OOD-learning task
(i.e., ❶) and the AALs-learning task (i.e., ❷) as two opti-
mization levels, where the latter is formulated as an outer-
level optimization problem, and it relies on the optimization
of the inner-level OOD-learning task. To the best of our
knowledge, the bilevel optimization (BLO) framework has
not been considered for balancing IID and OOD in-depth
and systematically. The model optimization is as the fol-
lowing BLO problem (❷ being nested inside ❶):

minimize
α

LERM (Dval, θ
∗(α), ϕ∗(α), α)︸ ︷︷ ︸

❶: Updating AALs α

,
(4)

s.t. {θ∗(α), ϕ∗(α)} = argmin
θ,ϕ

Equation (2) or (3)︷ ︸︸ ︷
R(Dtr, θ, ϕ, α)︸ ︷︷ ︸

❷: Updating OOD models θ and ϕ

, (5)

where Dval denotes validation data which is obtained by
flipping training data Dtr. α is the parameters of auxil-
iary adapter layers (AALs). {θ∗, ϕ∗} is the inner-level solu-
tion obtained by minimizing the objective function R given
α. By alternatively performing inner level and outer level,
AALs gradually evolve to the state of being able to produce
satisfactory OOD and IID performance with OOD training.

The BLO formulation has the following advantages: (1)
BLO has the flexibility to use mismatched OOD and IID
optimization objectives at outer and inner levels, respec-
tively. Moreover, different objectives use different sample
batches. To be specific, Bω with ω = {θ, ϕ} is sampled
from training data Dtr to update inner-level OOD models
while Bβ is sampled from validation data Dval to optimize

outer-level AALs. It can improve the generalization ability
of the model [10, 20, 12]. (2) By alternatively performing
inner and outer levels, AALs and OOD models can find op-
timal parameters to extract invariant features that help OOD
learning and variant features that help IID generalization.

4.2. BLO with Gradient Approximation

The computation of implicit gradient (IG) is the key
challenge of optimizing Equation (4). In this section, to
solve the IG challenge, we propose an alternating approxi-
mation algorithm to save computational time and memory.
Updating ω in the inner level. In each outer iteration, in-
stead of completely solving the inner level problem, we fix
auxiliary adapter layers α and only consider gradient steps
of the model parameters ω at the t-th iteration as follows:

ω(t) = ω(t−1) − ηω ▽ω R(Bω, ω
(t−1), α(t−1)), (6)

where ▽ω is partial derivatives of ω. ηω is the learning rate
for model parameters ω. Bω is batch sampled from Dtr.
Updating α in the outer level. After obtaining the parame-
ters ω(t) (a reasonable approximation of ω∗(α)), we update
α by calculating the outer level optimization objective as:

α(t) = α(t−1) − ηα ▽α LERM (Bα, ω
(t), α(t−1)), (7)

where ▽α means partial derivatives of α. ηα is the learning
rate for adapter parameters α. Bα is batch sampled from
validation data Dval flipping by Dtr. When we directly
backpropagate the gradient, the IG problem occurs because
ω(t) nested inside α(t). Therefore, we propose a method
to approximate the gradient ▽αLERM (Bα, ω

(t), α(t−1)) of
αt (see supplementary for detailed derivations) as below:

▽αLERM (ω(t), α(t−1))︸ ︷︷ ︸
Gradient of AALs

= ▽ωLERM (ω(t), α(t−1)) ·

IG︷ ︸︸ ︷
▽αω

∗(α)

= −ηω
1

ϵ
(▽αR(ω(t−1) + ϵυ, α(t−1)))−▽αLERM (ω(t−1), α(t−1)),

(8)
where υ = ▽ωLERM (ω(t), α(t−1)) with small ϵ > 0.

For ease of notation, we omit Bω and Bα in loss R and
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Figure 4. Two connection ways in (a) and (b) to insert our adapters
into the OOD module. Two forms of adapters in (c) and (d).

LERM , respectively. Equation (8) can be easily imple-
mented by maintaining ω(t−1) at last iteration to catch the
OOD loss R(ω(t−1), α(t−1)) and compute the new loss
R(ω(t−1)+ϵυ, α(t−1)). When ηω is set to 0 in Equation (8),
the second-order derivative will disappear, resulting in a
first-order approximate. The complexity of the first order
is the same as OOD methods, and the performance is as
efficient as the second order (see results in Section 5.4).

4.3. Auxiliary Adapter Layers

In this subsection, we discuss that how to connect the
OOD featurizer with AALs and how to design the form of
AALs. For the first problem, we insert the adapter between
the conv layer and BN, as shown in the right of Figure 5 in
each OOD module (left of Figure 5). Concretely, The l ∈
[1, · · · , L]-th layer of the featurizer fθ is denoted as fθl with
the weights θl. And the adapter in each module is denoted
as Aα parameterized by α. The information extracted by
Aαl

can be incorporated into the output of the l-th layer as
the input of l + 1 layer. The formulation is as follows:

f{θl,αl}(zl) = Aαl
(fθl(zl), zl), (9)

where zl ∈ RWl×Hl×Cl is the feature tensor that is the in-
put of the l-th module θl. Wl, Hl and Cl are the width,
height and channel of the l-th convolutional layer, respec-
tively. Motivated by [29], we consider two connection ways
for incorporating adapter Aαl

into OOD featurizer fθl : ➊
serial connection by subsequently applying it to the output:

f{θl,αl}(zl) = Aαl
◦ fθl(zl), (10)

which is illustrated in Figure 4 (a), and ➋ parallel connec-
tion by a residual addition and is illustrated in Figure 4 (b):

f{θl,αl}(zl) = Aαl
+ fθl(zl). (11)

For the second problem, we consider two options for
Aαl

: ➊ matrix multiplication with αl ∈ RCl×Cl+1 in Fig-
ure 4 (c), where Cl and Cl+1 are the number of input and
output channels, respectively. The formulation is as below:

Aαl
(fθl(zl)) = zl ⊗ αl, (12)

Algorithm 1 Training process of MAP
Require: Training data Dtr , validation data Dval by flipping Dtr , inner-

and outer-level learning rate ηω and ηα
1: Randomly initialize all learnable parameters {ω = (θ, ϕ), α}
2: for Iteration t = 0, 1, · · · do
3: Pick different random data batches Bω and Bα for different levels

of data Dtr and Dval, respectively
4: //Inner-level: update the OOD model ω using the OOD loss:
5:

ω(t) = ω(t−1) − ηω ▽ω R(Bω , ω
(t−1), α(t−1))

6: //Outer-level: update the adapter α using the ERM loss:7:
α(t) = α(t−1) − ηα ▽α LERM (Bα, ω

(t), α(t−1))

8: end for

BN ReLUConv layer
OOD module  

Adapter BN ReLUConv layer
OOD module      with AALs 𝜃 𝛼𝜃

Figure 5. The difference between the OOD module with (right)
and without (left) adapter. Conv layer, BN and RELU is the con-
volutional layer, BathchNorm and activate function, respectively.

where ⊗ denotes a convolutional operation with 1 × 1 ker-
nels in our code. ➋ channel wise scaling in Figure 4 (d):

Aαl
(fθl(zl)) = zl ⊙ αl, (13)

where ⊙ is a Hadamard product and αl ∈ RCl . The whole
optimization of MAP is illustrated in Algorithm 1.

5. Experiments
In this section, we evaluate the performance of the pro-

posed MAP, aiming to answer the following questions: Q1:
Could MAP balance the robustness of IID and OOD gener-
alization compared with prior IID and OOD methods? (Sec-
tion 5.2) Q2: Could MAP be the model-agnostic adapters?
(Section 5.3) Q3: How effective is the proposed MAP in
different settings (or ablation study)? (Section 5.4)1.

5.1. Experimental Setup

Dataset. We use six OOD classification datasets, including
three toy, i.e., ColoredMNIST [4], ColoredCOCO [1], CO-
COPlaces [1] and three real, i.e., NICO [19], CelebA [35],
WILDSCamelyon [24] (more details in the supplementary).
Baseline methods. We compare our MAP to a large
number of algorithms that span different learning strate-
gies, including (1) IID learning: ERM [51] (2) OOD
learning ( fifteen methods): IRM [4], VREx [26],
ARM [60], GroupDRO [44], MLDG [27], MMD [28],
IGA [25], SANDMask [45], Fish [47], CDANN [30],
TRM [54] IB ERM [2], IB IRM [2], CondCAD [42],
CausIRL CORAL [9] where ARM, MLDG and Fish also
use the bilevel optimization (see more details in Section 2).
Backbone. We use the four-layer convolutional neural net-
work (Conv4) for ColoredMNIST and ResNet18 pretrained
by ImageNet [43] for three real datasets. Following [1], a

1The code is available at: https://github.com/remiMZ/MAP-ICCV23.
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ColoredMNIST ColoredCOCO COCOPlaces
Methods OOD IID HM OOD IID HM OOD IID HM
ERM [51] 29.7 ± 0.2 86.0 ± 0.2 44.2 45.4 ± 0.9 77.0 ± 0.6 57.1 20.1 ± 0.7 72.6 ± 0.5 31.5
IRM [4] 60.3 ± 2.8 32.6 ± 7.0 42.3 49.2 ± 0.3 70.9 ± 1.7 58.1 27.1 ± 0.9 60.6 ± 2.6 37.5
VREx [26] 52.9 ± 1.2 14.6 ± 0.3 22.9 48.8 ± 0.7 73.6 ± 0.9 58.7 26.2 ± 0.7 64.5 ± 1.0 37.3
GroupDRO [44] 38.5 ± 1.5 51.5 ± 0.3 44.1 49.1 ± 0.6 74.8 ± 1.8 59.3 26.9 ± 0.6 64.8 ± 1.4 38.0
MLDG [27] 29.4 ± 0.6 50.3 ± 0.0 34.6 11.9 ± 0.8 20.5 ± 0.1 15.1 14.6 ± 0.5 16.7 ± 2.3 15.6
MMD [28] 50.6 ± 0.1 51.3 ± 0.6 51.0 50.4 ± 0.8 73.8 ± 1.0 59.9 26.3 ± 1.7 68.0 ± 1.5 37.9
IGA [25] 50.5 ± 0.1 25.0 ± 7.9 33.4 11.0 ± 0.6 17.5 ± 2.7 13.5 10.8 ± 0.3 11.6 ± 0.8 11.2
SANDMask [45] 58.6 ± 6.5 42.2 ± 7.2 49.1 49.2 ± 1.2 74.0 ± 0.7 59.1 25.9 ± 1.4 66.2 ± 0.3 37.2
Fish [47] 28.0 ± 1.5 46.4 ± 3.2 34.9 41.7 ± 0.5 71.7 ± 0.4 52.7 19.3 ± 2.1 55.9 ± 3.2 28.7
CDANN [30] 41.7 ± 3.5 22.6 ± 1.5 29.3 38.4 ± 1.5 70.1 ± 1.3 49.6 19.4 ± 1.0 58.2 ± 2.7 29.1
TRM [54] 44.2 ± 5.0 32.1 ± 9.5 37.2 47.5 ± 0.6 72.8 ± 0.2 57.5 24.8 ± 1.1 60.8 ± 0.6 35.2
IB ERM [2] 50.2 ± 0.2 51.7 ± 1.7 50.9 45.4 ± 1.1 72.4 ± 2.5 55.8 20.2 ± 1.0 60.3 ± 0.6 30.2
CausIRL CORAL [9] 28.7 ± 1.3 50.6 ± 0.2 36.6 51.5 ± 1.1 73.9 ± 0.9 60.7 26.1 ± 1.1 66.3 ± 1.3 37.5
CondCAD [42] 49.2 ± 0.5 21.1 ± 2.6 29.5 41.2 ± 0.7 67.2 ± 1.3 51.1 20.8 ± 0.3 60.6 ± 0.4 31.0
IB IRM [2] 53.8 ± 1.8 37.9 ± 10.0 44.5 33.9 ± 0.6 67.3 ± 1.4 45.1 14.8 ± 2.3 53.5 ± 0.5 23.2
ARM [60] 28.1 ± 0.0 49.9 ± 0.1 36.0 33.0 ± 0.6 63.3 ± 0.6 43.4 25.1 ± 0.2 52.7 ± 0.4 34.0
MAP (ours) 52.6 ± 0.5 71.5 ± 0.7 60.6 50.9 ± 1.3 78.1 ± 1.1 61.6 26.9 ± 1.0 69.1 ± 0.8 38.7

NICO CelebA WILDSCamelyon
Methods OOD IID HM OOD IID HM OOD IID HM
ERM [51] 73.6 ± 1.9 91.1 ± 1.0 81.4 85.4 ± 1.1 97.2 ± 0.1 90.9 94.7 ± 0.1 98.0 ± 0.0 96.3
IRM [4] 75.8 ± 2.0 87.2 ± 0.9 81.1 83.9 ± 2.0 96.3 ± 0.3 86.7 95.4 ± 0.2 95.0 ± 0.1 95.2
VREx [26] 76.9 ± 0.7 88.5 ± 1.1 82.3 84.4 ± 0.7 95.9 ± 0.2 89.8 94.2 ± 0.1 97.0 ± 0.2 95.6
GroupDRO [44] 74.6 ± 2.4 85.4 ± 1.2 79.6 85.5 ± 0.7 96.6 ± 0.2 90.7 95.2 ± 0.1 95.6 ± 0.5 95.4
MLDG [27] 68.4 ± 2.7 52.4 ± 5.1 59.3 82.9 ± 2.3 93.1 ± 1.1 87.7 87.9 ± 1.0 86.6 ± 1.4 87.2
MMD [28] 78.2 ± 1.2 87.2 ± 0.8 82.5 86.2 ± 0.3 93.0 ± 1.7 89.5 94.7 ± 0.2 96.5 ± 0.1 95.6
IGA [25] 48.1 ± 1.3 53.9 ± 4.1 50.8 80.3 ± 2.0 92.2 ± 1.5 85.8 59.1 ± 1.3 88.0 ± 1.2 70.7
SANDMask [45] 72.8 ± 1.5 86.0 ± 2.2 78.9 84.8 ± 0.4 95.4 ± 0.2 90.2 96.4 ± 0.1 96.2 ± 0.3 96.3
Fish [47] 77.0 ± 1.2 88.0 ± 0.9 82.1 84.4 ± 0.8 96.9 ± 0.1 90.2 95.0 ± 0.1 96.5 ± 0.1 95.7
CDANN [30] 72.8 ± 1.8 84.4 ± 1.2 78.2 85.2 ± 1.0 96.9 ± 0.2 90.7 96.3 ± 0.1 97.2 ± 0.2 96.7
TRM [54] 73.0 ± 0.9 79.2 ± 5.0 76.0 83.9 ± 0.5 96.7 ± 0.2 89.8 96.3 ± 0.1 97.2 ± 0.2 96.7
IB ERM [2] 77.7 ± 1.9 71.9 ± 12.2 74.7 84.7 ± 0.5 96.6 ± 0.2 90.2 96.1 ± 0.1 97.1 ± 0.1 96.6
CausIRL CORAL [9] 75.7 ± 0.9 87.3 ± 0.6 81.1 84.9 ± 1.3 96.9 ± 0.2 90.5 95.4 ± 0.1 96.0 ± 0.2 95.7
CondCAD [42] 73.9 ± 1.4 88.1 ± 0.6 80.4 84.2 ± 0.6 96.2 ± 0.1 89.8 96.1 ± 0.1 96.8 ± 0.2 96.4
IB IRM [2] 70.2 ± 2.2 86.6 ± 0.6 77.5 85.5 ± 0.7 94.1 ± 1.4 89.6 96.3 ± 0.1 97.3 ± 0.3 96.8
ARM [60] 76.4 ± 1.6 87.9 ± 1.4 81.7 86.9 ± 0.5 95.9 ± 0.2 91.2 93.5 ± 0.5 95.9 ± 0.5 94.7
MAP (ours) 76.8 ± 1.4 89.0 ± 0.6 82.5 87.3 ± 0.5 96.4 ± 0.1 91.6 95.3 ± 0.3 97.8 ± 0.2 97.4

Table 1. Experiments of three toy (top) and three real (bottom) datasets. Here, we show average accuracy (%) of IID and OOD. HM is the
harmonic mean as a trade-off metric. We repeat experiments three times across 20 hyperparameter seeds by following DomainBed [13].

residual network trained from scratch is used for Colored-
COCO and COCOPlaces and is called as ResNet8. For
Conv4, AALs are placed behind the convolutional layer.
For residual networks, we only use AALs in each block.
Model selection and implementation details. To evaluate
the performance of IID and OOD, we split each environ-
ment for each dataset into two subsets of d1 and d2, where
the number of samples of d1 and d2 is 9:1. The subset d1 of
training environments is used to train the model, and d2 is
used to evaluate IID accuracy. While the subset d1 of test-
ing environments is used to evaluate OOD accuracy, and d2
is used to select the best model (or named oracle selection)
by following the standard protocol of DomainBed [13, 56].

Then IID and OOD accuracy are calculated based on the
selected model. Note that MAP uses the OOD loss of the
VREx [26] method in the inner level.

5.2. Evaluating the Balance of IID and OOD Data

In Table 1, we report the overall performance of MAP
and sixteen baselines under IID and OOD evaluations on six
datasets. We further reported the harmonic mean (HM =
2x1x2

x1+x2
) of accuracy on IID and OOD data. Following [36],

we use this metric to evaluate the trade-off between IID and
OOD performance. According to Table 1, we have the fol-
lowing findings: (1) Compared with the IID method (i.e.,
ERM), these fifteen OOD methods have good OOD perfor-
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ColoredMNIST ColoredCOCO NICO
Methods OOD IID HM OOD IID HM OOD IID HM
IRM [4] 60.3 ± 2.8 32.6 ± 7.0 42.3 49.2 ± 0.3 70.9 ± 1.7 58.1 75.8 ± 2.0 87.2 ± 0.9 81.1

+ MAP 57.3 ± 3.2 55.3 ± 2.9 56.3 +14.0 47.9 ± 1.1 75.6 ± 1.2 58.6 +0.5 76.2 ± 1.1 88.7 ± 2.5 82.0 +0.9
VREx [26] 52.9 ± 1.3 14.6 ± 0.3 22.9 48.8 ± 0.7 73.6 ± 0.9 58.7 76.9 ± 0.7 88.5 ± 1.1 82.3

+ MAP 52.6 ± 0.5 71.5 ± 1.2 60.6 +37.7 50.9 ± 1.3 78.1 ± 1.1 61.6 +2.9 77.6 ± 0.8 89.1 ± 0.6 83.0 +0.7
ARM [60] 28.1 ± 0.0 49.9 ± 0.1 36.0 33.0 ± 0.6 63.3 ± 0.6 43.4 76.4 ± 1.6 87.9 ± 1.4 81.7

+ MAP 58.1 ± 4.5 69.4 ± 2.7 63.2 +27.2 32.8 ± 0.5 66.5 ± 1.1 44.0 +0.6 75.2 ± 1.5 89.6 ± 1.5 81.8 +0.1
GroupDRO [44] 38.5 ± 1.5 51.5 ± 0.3 44.1 49.1 ± 0.6 74.8 ± 1.8 59.3 74.6 ± 2.4 85.4 ± 1.2 79.6

+ MAP 38.9 ± 1.5 64.3 ± 3.5 48.5 +4.4 48.3 ± 0.7 76.8 ± 0.8 59.3 +0.0 75.8 ± 1.4 87.5 ± 1.7 81.2 +1.6
CDANN [30] 41.7 ± 3.5 22.6 ± 1.5 29.3 38.4 ± 1.5 70.1 ± 1.3 49.6 72.8 ± 1.8 84.4 ± 1.2 78.2

+ MAP 49.7 ± 0.4 44.8 ± 0.6 47.1 +17.8 38.1 ± 0.7 74.9 ± 2.9 50.5 +0.9 72.5 ± 1.0 85.6 ± 1.1 78.5 +0.3
TRM [54] 44.2 ± 5.0 32.1 ± 9.5 37.2 45.0 ± 0.8 72.8 ± 0.2 55.6 73.0 ± 0.9 79.2 ± 5.0 76.0

+ MAP 50.3 ± 0.3 53.6 ± 1.3 51.9 +14.7 44.8 ± 0.9 75.9 ± 0.8 56.3 +0.7 75.1 ± 0.4 78.9 ± 2.7 77.0 +1.0
IB ERM [2] 50.2 ± 0.2 51.7 ± 1.7 50.9 45.4 ± 1.1 72.4 ± 2.5 55.8 77.7 ± 1.9 71.9 ± 12.2 74.7

+ MAP 52.5 ± 0.3 62.2 ± 1.9 57.0 +6.1 46.9 ± 0.1 75.6 ± 2.1 57.9 +2.1 75.6 ± 0.5 73.8 ± 1.2 74.7 +0.0
IB IRM [2] 53.8 ± 1.8 37.9 ± 10.0 44.5 33.9 ± 0.6 67.3 ± 1.4 45.1 70.2 ± 2.2 86.6 ± 0.6 77.5

+ MAP 56.3 ± 0.1 50.1 ± 7.5 53.0 +8.5 33.4 ± 0.6 69.8 ± 1.1 45.2 +0.1 77.8 ± 2.4 85.6 ± 0.7 81.5 +4.0

Table 2. Average accuracy (%) of eight OOD methods with or without using our MAP on ColoredMNIST, ColoredCOCO and NICO.
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Figure 6. Running means and variances of channel-wise BathchNorm of five OOD methods with and without using the proposed MAP.

mance, but a significant drop in IID accuracy on all datasets,
which demonstrates our motivation, i.e., most OOD meth-
ods might lose some information that helps the IID learn-
ing in the OOD generalization. Furthermore, since the
spurious correlation might be weaker on real datasets, the
performance gap between IID and OOD methods becomes
smaller. This phenomenon demonstrates that the IID model
extracts easy-to-learn variant features to learn the inductive
bias of training data, in comparison, the OOD model learns
hard-to-learn invariant features to improve the performance
of unseen testing distributions. (2) According to the HM
metric, MAP achieves the balanced generalization ability
on all datasets. This is because MAP has the advantage
of simultaneously capturing the inductive bias between IID
and OOD data, which demonstrates the effectiveness of our
method. (3) Surprisingly, MAP even increases the OOD
performance of OOD methods in some settings and the IID
performance in ColoredCOCO outperforms ERM by 1.1%.
Similar conclusions can be obtained based on Table 2. One
possible reason is that the bilevel optimization can find suit-
able model parameters for IID and OOD generalizations
(see more discussion in Sections 5.3).

5.3. Evaluating the Flexibility of MAP

We study how the proposed MAP improves the trade-off
ability of many OOD methods. In Table 2, we show re-
sults by using eight OOD methods with or without MAP on
three datasets. (1) We can observe that all OOD methods

with MAP outperform those without MAP, especially in us-
ing VREx on ColoredMNIST brings a 37% improvement.
It not only indicates that MAP is a model-agnostic frame-
work, but also significantly improves the trade-off ability of
these OOD methods. (2) With a deep look at the OOD eval-
uation, MAP shows its comparable performance. Surpris-
ingly, MAP even increases the OOD performance in some
OOD methods, especially on ColoredMNIST. We think that
the iterative learning of the OOD model and AALs using
bilevel optimization may help the OOD model to explore
more knowledge that is helpful for OOD generalization.

In Figure 6, we visualize the inductive bias of five OOD
methods with or without using MAP to observe the learned
statistics information. The inductive bias learned by MAP
can capture both IID and OOD scenarios. An interesting
observation is that compared with CDANN, MAP not only
uses adapters to capture IID generalization information but
also explores more OOD generalization knowledge. A sim-
ilar observation is made in the ARM method. This phe-
nomenon shows that MAP has the ability to simultaneously
improve the performance of IID and OOD evaluations.

5.4. Ablation Study

We conduct extensive ablation studies to evaluate the ro-
bustness of the proposed MAP under various settings.
Comparison of different structural designs of MAP. In
Table 3, we analyze the impact of different connections (i.e.,
serial or residual in Figure 4 (a) and (b)), different forms
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Connection Form Init. ColoredMNIST NICO
Notes serial residual matrix channel random eye OOD IID HM OOD IID HM
VREx [26] ✗ ✗ ✗ ✗ ✗ ✗ 52.9 ± 1.2 14.6 ± 0.3 22.9 76.9 ± 0.7 88.5 ± 1.1 82.3

✓ ✗ ✓ ✗ ✓ ✗ 50.3 ± 1.2 52.6 ± 1.5 51.4 75.6 ± 2.1 88.4 ± 1.6 81.5
✓ ✗ ✓ ✗ ✗ ✓ 49.7 ± 2.2 60.7 ± 1.3 54.7 76.5 ± 1.7 89.0 ± 1.5 82.3
✓ ✗ ✗ ✓ ✓ ✗ 51.8 ± 1.7 40.3 ± 2.3 45.3 77.1 ± 0.1 88.2 ± 1.7 82.3

+ MAP ✓ ✗ ✗ ✓ ✗ ✓ 50.0 ± 1.6 51.2 ± 1.3 50.6 77.4 ± 1.6 88.6 ± 0.5 82.6
✗ ✓ ✓ ✗ ✓ ✗ 52.6 ± 0.9 71.5 ± 0.5 60.6 77.6 ± 0.8 89.1 ± 1.2 83.0
✗ ✓ ✓ ✗ ✗ ✓ 43.1 ± 1.1 68.6 ± 2.9 53.0 75.9 ± 1.7 89.4 ± 0.9 82.1
✗ ✓ ✗ ✓ ✓ ✗ 46.3 ± 2.7 68.8 ± 2.5 55.4 73.8 ± 1.1 88.9 ± 2.0 80.6
✗ ✓ ✗ ✓ ✗ ✓ 47.5 ± 1.6 65.5 ± 2.7 55.1 75.1 ± 1.4 89.2 ± 0.7 81.5

Table 3. Experimental results using different forms of the adapter on ColoredMNIST and NICO. The Method in gray denotes the baseline
model. The specific details of connection and form are shown in Figure 4. Init. represents the initialization form of our adapter parameters.

Major shifts → Minor shifts
Methods 0.1 0.3 0.5 0.7 0.9
ERM [51] 29.7 45.5 ↑ 60.6 ↑ 85.5 ↑ 90.0 ↑
IRM [4] 60.3 53.8 ↓ 46.2 ↓ 41.7 ↓ 33.5 ↓
VREx [26] 52.9 49.6 ↓ 34.4 ↓ 22.8 ↓ 18.7 ↓
GroupDRO [44] 38.5 45.9 ↓ 48.6 ↓ 50.1 ↓ 50.9 ↓
MLDG [27] 29.4 40.0 ↓ 50.9 ↓ 55.0 ↓ 52.7 ↓
MMD [28] 50.6 50.3 ↓ 56.0 ↑ 53.5 ↓ 49.8 ↓
IGA [25] 50.5 45.4 ↓ 36.5 ↓ 30.0 ↓ 24.1 ↓
SANDMask [45] 58.6 53.2 ↓ 50.7 ↓ 46.5 ↓ 42.6 ↓
CDANN [30] 41.7 35.5 ↓ 29.4 ↓ 27.6 ↓ 23.1 ↓
TRM [54] 44.2 42.3 ↓ 45.7 ↑ 42.2 ↓ 31.9 ↓
IB IRM [2] 53.8 53.2 ↓ 48.6 ↓ 41.8 ↓ 38.1 ↓
CondCAD [42] 49.2 47.1 ↓ 36.1 ↓ 31.7 ↓ 20.9 ↓
MAP (ours) 52.6 54.4 ↑ 62.9 ↑ 71.1 ↑ 80.5 ↑

Table 4. Various distribution shifts are constructed on ColoredM-
NIST to simulate real-world data. These ratios (e.g., 0.1) represent
the proportion between red and green samples in class 0 on testing
data (more details in supplementary). ↑ (or ↓) is the increase (or
decrease) in performance compared with the previous value.

(i.e., matrix or channel in Figure 4 (c) and (d)) and differ-
ent initializations (i.e., random or eye). In all settings, a
combination of residual, matrix and random has the best
performance and this combination is also used in other ex-
perimental settings. Although different combinations bring
different performances, in most cases, MAP is far superior
to the baseline (close to 40% improvement), especially in
ColoredMNIST with strong spurious correlations. We will
further study the best combination form in future work.
Could MAP perform well under different distribution
shifts? In Table 4, we construct various distribution shifts,
i.e., from major shifts to minor shifts, to simulate uncer-
tain real-world data. The performance of most OOD meth-
ods degrades as the shifts get smaller or closer to IID data,
which demonstrates that these OOD methods extract invari-
ant features while possibly losing some information that
contributes to IID generalization. On the contrary, our MAP
has good performance under different distribution shifts,
which shows that MAP can learn the knowledge lost by
OOD methods. More results are in the supplementary.
Is the bilevel optimization effective? We analyze the train-
ing strategy of first-order, second-order bilevel optimization
(BLO) and without BLO (we optimize ω simultaneously
with α on training data without validation and two levels).

Featurizer without MAP with MAP
Conv4 0.35M 0.39M+0.04M
ResNet8 4.67M 5.17M+0.5M
ResNet18 10.76M 11.82M+1.06M

Table 5. Comparison of model parameters with or without MAP.
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Figure 7. Experiments using different optimization algorithms.
VREx, FBLO, SBLO and WBLO denote vanilla VREx, first-order
BLO, second-order BLO and without BLO, respectively.

Figure 7 shows results on the ColoredMNIST and NICO
datasets. We can observe that the performance of first-order
and second-order BLO is similar and better than the vanilla
VREx, but WBLO has poor performance in NICO. This
demonstrates that the BLO can significantly improve gener-
alization capability, and the first-order approximate is suffi-
cient as the second order with a good performance.
Model parameters. In Table 5, we compared model param-
eters with or without MAP based on three featurizers. The
form of adapters is residual and matrix, because this com-
bination brings the largest parameters compared with other
forms in Table 2. A few model parameters can bring sig-
nificant performance, especially in Conv4, which shows the
practical availability of the proposed MAP in applications.

6. Conclusion
In this paper, we investigate a problem of the IID-OOD

dilemma and propose an effective Model Agnostic adaPters
(MAP) method to achieve the balanced generalization per-
formance between IID and OOD evaluations for uncertain
real-world distribution shifts. Specifically, the proposed
MAP method inserts auxiliary adapter layers (AALs) in the
OOD model to simultaneously learn the inductive bias of
IID and OOD data. To achieve this, a bilevel optimization
(BLO) is used, which optimizes the OOD model in the in-
ner level using an OOD loss and updates AALs in the outer
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level with an ERM loss based on the optimized OOD model
in the inner level. Extensive experiments on six datasets
demonstrate that our MAP is able to balance both IID and
OOD performance compared with sixteen IID and OOD
methods. In future work, we may extend our method to
other tasks, e.g., adversarial attacks, to improve the trade-
off ability of clean accuracy and adversarial robustness.
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