
74

Auto IV: Counterfactual Prediction via Automatic

Instrumental Variable Decomposition

JUNKUN YUAN, ANPENG WU, and KUN KUANG, Zhejiang University

BO LI, Tsinghua University

RUNZE WU, NetEase Fuxi AI Lab

FEI WU and LANFEN LIN, Zhejiang University

Instrumental variables (IVs), sources of treatment randomization that are conditionally independent of the

outcome, play an important role in causal inference with unobserved confounders. However, the existing IV-

based counterfactual prediction methods need well-predefined IVs, while it’s an art rather than science to find

valid IVs in many real-world scenes. Moreover, the predefined hand-made IVs could be weak or erroneous

by violating the conditions of valid IVs. These thorny facts hinder the application of the IV-based counterfac-

tual prediction methods. In this article, we propose a novel Automatic Instrumental Variable decomposition

(AutoIV) algorithm to automatically generate representations serving the role of IVs from observed variables

(IV candidates). Specifically, we let the learned IV representations satisfy the relevance condition with the

treatment and exclusion condition with the outcome via mutual information maximization and minimization

constraints, respectively. We also learn confounder representations by encouraging them to be relevant to

both the treatment and the outcome. The IV and confounder representations compete for the information

with their constraints in an adversarial game, which allows us to get valid IV representations for IV-based

counterfactual prediction. Extensive experiments demonstrate that our method generates valid IV represen-

tations for accurate IV-based counterfactual prediction.

CCS Concepts: • Computing methodologies → Causal reasoning and diagnostics; Machine learning;

Statistical relational learning;

Additional Key Words and Phrases: Instrumental variable, counterfactual prediction, causal inference, repre-

sentation learning, mutual information

Junkun Yuan and Anpeng Wu contribute equally to this article.

This work was supported in part by National Key Research and Development Program of China (No. 2018AAA0101900),

National Natural Science Foundation of China (No. 61625107, No. 62006207), Key R & D Projects of the Ministry of Sci-

ence and Technology (No. 2020YFC0832500), the Fundamental Research Funds for the Central Universities and Zhejiang

Province Natural Science Foundation (No. LQ21F020020). Bo Li’s research was supported by the National Natural Science

Foundation of China (No.72171131), the Tsinghua University Initiative Scientific Research Grant, No. 2019THZWJC11; Tech-

nology and Innovation Major Project of the Ministry of Science and Technology of China under Grant 2020AAA0108400

and 2020AAA01084020108403.

Authors’ addresses: J. Yuan, A. Wu, K. Kuang (corresponding author), F. Wu, and L. Lin, Zhejiang University, 310027

Zhejiang, China; emails: {yuanjk, anpwu, kunkuang}@zju.edu.cn, wufei@cs.zju.edu.cn, llf@zju.edu.cn; B. Li, Tsinghua

University, 00000 Beijing, China; email: libo@sem.tsinghua.edu.cn; R. Wu, NetEase Fuxi AI Lab, Zhejiang, China; email:

wurunze1@corp.netease.com.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2022 Association for Computing Machinery.

1556-4681/2022/01-ART74 $15.00

https://doi.org/10.1145/3494568

ACM Transactions on Knowledge Discovery from Data, Vol. 16, No. 4, Article 74. Publication date: January 2022.

mailto:permissions@acm.org
https://doi.org/10.1145/3494568


74:2 J. Yuan et al.

ACM Reference format:

Junkun Yuan, Anpeng Wu, Kun Kuang, Bo Li, Runze Wu, Fei Wu, and Lanfen Lin. 2022. Auto IV: Counterfac-

tual Prediction via Automatic Instrumental Variable Decomposition. ACM Trans. Knowl. Discov. Data. 16, 4,

Article 74 (January 2022), 20 pages.

https://doi.org/10.1145/3494568

1 INTRODUCTION

As a representative task in machine learning [12, 13, 22, 35], supervised learning [9, 38] explores

correlations between variables from rich data for prediction. However, in many real applications, a

decision-maker always wants to judge the counterfactual impact of treatment (policy) changes on

the outcome that can not be found in the data. For example, an airline wants to estimate the effect of

prices (i.e., treatment) on customers’ purchase tendency (i.e., outcome) [18]. We may observe that

examples with high prices are often associated with high sales in data sampled during holidays,

which may fool the direct supervised learning approaches to predict that increasing prices would

also lead to high sales at other times. In this case, we can add the observable confounders (i.e.,

holidays, which cause the changes in both the prices and the sales) into training data to correct

the model. Nevertheless, if there exist unobserved confounders (e.g., conferences, which are also

common causes of the prices and the sales but are unknown to the decision-maker), the typical

supervised learning model would still head in the wrong direction.

Instrumental Variables (IVs) [43] are exogenous variables that are correlated to the treatment

but do not directly affect the outcome, which provides an alternative approach for counterfactual

prediction even with the unobserved confounders. Existing IV-based counterfactual prediction

methods mainly adopt a two-stage procedure, which first builds a model to estimate the treatment

based on the IVs, and then predicts the outcome with the estimated treatment. Two-stage least

squares (2SLS) [2] is a well-known method that employs the two-stage procedure with linear

models and obtains homogeneous treatment effects. Recent IV-based counterfactual prediction

works [3, 18, 30, 31, 37] mainly focus on generalizing previous approaches on high-dimensional

and non-linear data. These methods achieve great counterfactual prediction performance, however,

they rely heavily on well-predefined IVs. In many real-world applications, we can hardly have

enough prior knowledge to identify the valid IVs [28] (i.e., the variables that satisfy the relevance,

the exclusion, and the unconfounded instrument conditions, see Section 3 for details). Moreover,

the predefined hand-made IVs could be weak or erroneous by violating some of the conditions of

the valid IVs. Therefore, it’s highly demanding to develop a data-driven approach to automatically

obtain valid IVs (or IV representations) for the downstream IV-based counterfactual prediction

methods.

In many real applications, although there are always a large number of observed variables, few

of them satisfy the conditions of the valid IVs. Since finding the valid IVs is difficult, instead, there

are growing works that focus on synthesizing valid summary IVs with IV candidates [28] (some of

them might be invalid IVs, i.e., do not strictly satisfy the conditions of the valid IVs). Mendelian

Randomization (MR) [4] is a popular approach that utilizes genetic markers as the IVs to perform

causal inference [46] among clinical factors. Unweighted/Weighted Allele Scores (UAS/WAS)

[6, 7, 11] that weigh each IV candidate equally or based on the correlation between them and the

treatment are representative methods in MR. However, they need all the IV candidates to be both

valid and independent conditional on the summary IVs. Hartford et al. [17] apply an ensemble

method to select a valid IV set with asymptotical validity. But it not only relies on the indepen-

dence and modal validity of IV candidates but also needs high computation costs by running the

downstream IV-based methods with every IV candidate for valid set selection. Kuang et al. [28]
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present to model a summary IV as a latent variable and estimate it by utilizing recent advances in

weak supervision that is based on statistical dependencies among the IV candidates. However, this

method is confined to the binary variable setting, limiting its use in many real-world applications.

Inspired by the recent works [19, 44, 47] on causal disentangled representation learning, we ar-

gue that although invalid IV candidates do not satisfy the conditions of the valid IVs strictly, one

might decompose and utilize a part of their information to generate IV representations. Therefore,

in this article, we propose a novel Automatic Instrumental Variable decomposition (AutoIV)

algorithm to automatically generate representations serving the role of IVs for counterfactual pre-

diction with fewer constraints for the IV candidates. Specifically, we first generate the IV represen-

tations from the IV candidates and make them satisfy the relevance condition with the treatment

and the exclusion condition with the outcome via mutual information maximization and minimiza-

tion constraints, respectively. We also generate confounder representations by encouraging them

to be relevant to both the treatment and the outcome. The IV and the confounder representations

compete for the corresponding information with their constraints in an adversarial game, which

allows us to obtain valid IV representations for counterfactual prediction with the downstream

IV-based methods.

In summary, the main contributions of this article are:

— We study the problem of IV-based counterfactual prediction under a more practical setting,

i.e., no valid IVs are available for learning, which is beyond the capability of the previous

IV-based methods.

— We propose a novel AutoIV algorithm to automatically generate IV representations that

satisfy the conditions of the valid IVs from the IV candidates. It adopts mutual information

constraints to control representation learning process via an adversarial game.

— Extensive experiments show that the proposed method generates valid IV representations

for accurate counterfactual prediction, which is even comparable to directly using the true

valid IVs.

The rest of the article is organized as follows. In Section 2, some related works about IV-based

counterfactual prediction, IV synthesis, and causal representation learning are introduced. In Sec-

tion 3, the definition of the valid IVs and some related IV-based methods are stated. In Section 4, our

AutoIV algorithm is introduced. In Section 5, the results of the experiments on low-dimensional

and high-dimensional are reported. We discuss the investigation with a future research outlook in

Section 6.

2 RELATED WORK

In this section, we briefly review the related works of IV-based counterfactual prediction, IV syn-

thesis, and causal representation learning in recent years.

2.1 IV-Based Counterfactual Prediction

2SLS [2] is a representative method for IV-based counterfactual prediction with linear models in

causal inference researches [1, 24, 26, 46, 48]. Many recent IV-based counterfactual prediction meth-

ods extend 2SLS to non-linear and high-dimensional settings. One research direction is the gen-

eralized method of moments (GMM) [16], which uses moment conditions to estimate model

parameters. A recent trend is to combine GMM with machine learning, like selecting moment

conditions via adversarial training [30] and variational reformulation of GMM with deep neural

networks [3]. Another direction is based on kernel approaches, such as a single-stage kernel ap-

proach [31] and a novel method with consistency guarantees [37]. DeepIV [18] is a recent remark-

able study that fits a mixture density network for the treatment and trains an outcome prediction
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model with the estimated conditional treatment distribution. All of the above methods need prede-

fined IVs, and their performance relies on the validity of the given IVs. However, identifying and

obtaining valid IVs may be thorny because their validity conditions are strict.

2.2 IV Synthesis

There are a growing number of works [4, 5, 15, 17, 21, 28, 40] that propose to synthesize a valid

summary IV by using the given observed variables (IV candidates) in recent years. Among them,

some works [4, 5] are based on the independence condition of IV candidates, which is a strong

restrictive property [28]. Some approaches [5, 15, 21, 40] perform reliable estimation only when

most of the IV candidates are valid, which is also a strong condition. Hartford et al. [17] adopt

ensemble methods based on the modal validity of the IV candidates, however, it needs expensive

computation cost to select the valid IV set. UAS/WAS [6, 7, 11] weigh each IV candidate equally or

based on the correlation between them and the treatment. Kuang et al. [28] generalize the allele

scores method [6, 7, 11], which builds a summary IV and estimates it with advanced methods

from weak supervision and structure learning. However, it only applies to the binary variable

setting. These previous IV synthesis methods rely on some strong conditions for the IV candidates

and may not be practical in many real scenes, while we present an automatic IV representation

learning algorithm that only needs mild assumptions in this article. Take the airline case as an

example. When we are looking for valid IVs, e.g., fuel costs, from the IV candidates, we do not

need to assume that they are valid, modal validity, or binary, but only need them to be correlated

with the treatment, i.e., price, and be independent of the unobserved confounders, i.e., conferences.

2.3 Causal Representation Learning

Recently, causal representation learning [19, 20, 25, 26, 36, 44, 47] has attracted lots of attention in

many applications [23, 27, 33, 39, 45, 49]. Among these works, Yao et al. [47] propose to reduce pre-

diction bias by filtering out the nearly IVs. Some works [19, 44] decompose the IV, confounder, and

adjustment representations by encouraging or limiting the correlations between variables. How-

ever, these works are limited to the binary treatment setting. Moreover, they neither give empirical

results to show the effectiveness of the learned IV representations nor make use of the decomposed

IV representations for counterfactual prediction. In contrast, we present a data-driven IV represen-

tation learning algorithm and show its effectiveness by applying the learned representations to the

downstream IV-based methods for accurate counterfactual prediction.

3 PRELIMINARY

By following previous works [3, 37], we assume the relationship between treatment variable X
and outcome variable Y in data generating process is

Y = д(X) + e, (1)

whereд(⋅) is an unknown causal response function which is potentially non-linear and continuous,

and e is the error term that contains unobserved latent factors (i.e., unmeasured confounders)

which affect both X and Y . Here, we assume the error term e is with zero expectation and finite

variance (i.e., E[e] = 0 and E[e2] < ∞). e contains unobserved factors that affect X , thus e would

be correlated with X , i.e., E[e ∣X ] ≠ 0, which makes X an endogenous variable and leads to д(X) ≠
E[Y ∣X ]. Thus, it is infeasible to estimate the causal relationship д(⋅) between X and Y via directly

estimating E[Y ∣X ] from data distribution P(X ,Y) because of the confounding effect caused by

the unobserved error e . The IVs are introduced to solve the endogenous treatment problem as we

introduced previously. Valid IVs (denoted by Z ) should satisfy the following conditions [3, 18, 37]:
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— Relevance. Z is related to X , i.e., P(X ∣Z) ≠ P(X);
— Exclusion. Z does not directly affect Y , i.e., P(Y ∣Z ,X ,e) = P(Y ∣X ,e);
— Unconfounded Instrument. Z should be unconfounded, i.e., E[e ∣Z] = E[e].

The goal of IV-based counterfactual prediction is to obtain a counterfactual estimation function д̂
that is close to the true response function д. Moreover, if there exists exogenous variable C (i.e.,

P(e ∣C) = P(e)), we can make use of it for more accurate estimation, i.e.,X = (X ′,C) andZ = (Z ′,C),
where X ′ and Z ′ are the true treatment variable and instrumental variable, respectively. Note that

we will also learn confounder representations in our algorithm, which are used as the exogenous

variables C in the IV-based counterfactual prediction process.

Previous IV-based counterfactual prediction approaches assume that they have access to the

true valid IVs Z which strictly satisfy the above conditions. Then, we could identify the causal

response function д(⋅) based on

E[Y ∣Z] = E[д(X)∣Z] = ∫ д(X)dP(X ∣Z). (2)

That is, one may first learn P(X ∣Z), then use it to estimateд(⋅). For example, standard 2SLS method

[2] first learns E[ϕ(X)∣Z]with linear basis ϕ(⋅), then fitsY by least-squares regression with the co-

efficient ϕ̂(⋅) that estimated in the first stage. Some non-parametric works [10, 32] extend the model

basis to more complicated mapping functions or regularization, e.g., polynomial basis. DeepIV [18]

is proposed to apply deep neural networks in the two-stage procedure. It fits a mixture density net-

work Fϕ(X ∣Z) in the first stage and regresses Y by sampling from the estimated mixture Gaussian

distributions of X . KernelIV [37] is a recent kernel approach that maps Z , X , and Y to reproducing

kernel Hilbert spaces and perform the two-stage procedure in that space. DeepGMM [3] extends

the existing GMM methods in the high-dimensional treatment and IVs setting, which is based on

a novel variational reformulation of the optimally-weighted GMM.

The above existing IV-based counterfactual prediction methods need well-predefined valid IVs.

However, it is an art rather than science to find suitable IVs in real applications. Even worse, the

predefined hand-made IVs could be weak or erroneous by violating the conditions. Without the

valid IVs, the counterfactual prediction performance of these downstream IV-based methods can-

not be guaranteed.

In this article, we aim to automatically learn valid IV representations that can be applied to the

downstream IV-based methods for accurate counterfactual prediction. The validity of the learned

IV representation determines the accuracy of the downstream counterfactual prediction task.

4 METHOD

In this section, we propose a novel AutoIV algorithm to generate decomposed IV and confounder

representations from the observed variables. The proposed framework of AutoIV is shown in

Figure 1. The green part represents all the available variables, including observed variablesV , treat-

ment variables X , and outcome variables Y . E denotes unobserved confounders that are related to

both X and Y . The observed variables V are correlated with X and also might be associated with

Y . Similar to the general setting in recent IV analysis works [3, 18, 37], observed variables V are

assumed exogenous, i.e., P[E∣V ] = P[E]. Therefore, the decomposed representations of IVs Z and

confounders C are also exogenous, which satisfies the unconfounded IV condition. Suppose that

we have data D = {(vi ,x i ,yi)}N
i=1, our goal is to learn the representations of Z and C from the

observed variablesV based on their relationships toX andY with dataD. Then, we use the learned

representations for counterfactual prediction with the downstream IV-based methods introduced

in Section 3. The validity of the learned representations determines the accuracy of the IV-based

counterfactual prediction.
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Fig. 1. The proposed AutoIV framework. Variables V , X , and Y are corresponding to the observed variables,

treatment, and outcome, respectively. Variables e are unobserved confounders that are related to bothX and

Y . AutoIV decomposes representations of IVs Z and confoundersC from the observed variablesV automati-

cally, then use the learned representations for IV-based counterfactual prediction.

We first use neural networks to model the representations for Z andC as ϕZ (⋅) and ϕC(⋅) with

parameters θϕZ and θϕC , respectively. The observed variables V are used as inputs of the repre-

sentation networks. We control the information that flows into ϕZ (⋅) to be related to X and condi-

tionally independent of Y , which is based on the relevance and exclusion conditions, respectively.

We then let ϕC(⋅) be related to both X and Y . These two representation networks compete for

the corresponding information with their constraints in an adversarial game. A general two-stage

counterfactual prediction loss is then employed to further calibrate the learned representations.

Let A and B be two random variables that are correlated with each other. We have examples

ai and bi sampled from the distributions of A and B, respectively. We encourage (or discourage)

the relevance between A and B by maximizing (or minimizing) the mutual information between

them. However, only the samples {(ai ,bi)}N
i=1 are available in our task, but what mutual informa-

tion estimation needs is data distributions. Inspired by recent works on contrastive learning and

sample-based mutual information estimation [8, 34], we first learn a variational distributionq(B∣A)
to approximate P(B∣A). We let positive sample pair to be the sample pair with the same index (i.e.,

(ai ,bi)), and let negative sample pair be the sample pair with the different index (ai ,bj)i≠j . As we

already have the variational approximation q(B∣A), we can increase (or decrease) the relevance

between A and B by maximizing (or minimizing) the differences between the variational approxi-

mation of the positive sample pair (i.e., q(bi ∣ai)) and that of the negative sample pair (i.e., q(bj ∣ai)).
It can intuitively be interpreted that mutual information maximization task is achieved when there

exist distinct differences between the relevance of ai to its corresponding bi and the relevance of

ai to bj (where i ≠ j). Meanwhile, mutual information minimization is to reduce that differences.

Although there is deviation between q(B∣A) and P(B∣A), the estimated mutual information is still

excellent with great variational approximation [8].

4.1 Learning IV Representations

We aim to learn the IV representations that satisfy the conditions of the valid IVs (see Section 3),

i.e., relevance, exclusion, and unconfounded instrument. Since we have already assumed the ex-

ogeneity of the observed variables V by following previous works [3, 18, 37], and the learned

representations always satisfy the unconfounded instrument condition, we only need to make the

learned IV representations satisfy the relevance condition with the treatment and the exclusion

condition with the outcome.

Learning relevance. The relevance condition, i.e., P(X ∣Z) ≠ P(X), requires IV representa-

tions ϕZ (V ) to be correlated with the treatment X . Therefore, we encourage the information of
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V that is related to X to enter the IV representations ϕZ (V ). We first use variational distribution

qθZ X
(X ∣ϕZ (V ))with neural network parameters θZ X to approximate the true conditional distribu-

tion P(X ∣ϕZ (V )). The log-likelihood loss function of variational approximation qθZ X
(X ∣ϕZ (V ))

with N samples is given as:

LLLD
Z X = −

1

N

N

∑
i=1

logqθZ X
(x i ∣ϕZ (vi)). (3)

We minimize Equation (3) to get optimal variational approximation q
θ̂Z X
(X ∣ϕZ (V )) with parame-

ters θ̂Z X . To increase the relevance between the IV representations and the treatment, we maximize

the mutual information between them with

LMI
Z X = −

1

N 2

N

∑
i=1

N

∑
j=1

(logqθZ X
(x i ∣ϕZ (vi)) − logqθZ X

(x j ∣ϕZ (vi))), (4)

where logqθZ X
(x i ∣ϕZ (vi)) represents the conditional log-likelihood of positive sample pair

(ϕZ (vi),x i) andqθZ X
(x j ∣ϕZ (vi)i≠j represents the negative sample pair (ϕZ (vi),x j)i≠j . We mini-

mize Equation (4) to optimize the IV representationsϕZ (V ) for relevance condition via maximizing

differences between the positive and negative sample pairs.

Learning exclusion. The exclusion condition requires IV representations to be related to the

outcome Y only through the treatment X and unobserved error e , i.e., P(Y ∣Z ,X ,e) = P(Y ∣X ,e).
Since e is unobserved, we employ a more strict condition instead, i.e., Z � Y ∣X . Therefore, we

minimize mutual information betweenZ andY conditional onX . Similarly, we first use variational

distribution qθZ Y
(Y ∣ϕZ (V ))with parameters θZY to approximate the true conditional distribution

P(Y ∣ϕZ (V )). The log-likelihood loss function for qθZ Y
(Y ∣ϕZ (V )) is given as

LLLD
ZY = −

1

N

N

∑
i=1

logqθZ Y
(yi ∣ϕZ (vi)). (5)

The optimal variational approximation q
θ̂Z Y
(yi ∣ϕZ (vi)) is achieved with parameters θ̂ZY by mini-

mizing Equation (5). The IV representations ϕZ (V ) should be independent of the outcomeY given

the treatment X , we achieve it by minimizing the mutual information between them. Since the

treatments X are continuous random variables, we consider the constraints of conditional inde-

pendence with smooth weight wi j , and the loss function for mutual information minimization

between IV representations ϕZ (V ) and the outcome Y is given as:

LMI
ZY =

1

N 2

N

∑
i=1

N

∑
j=1

(ωi j ⋅ (logqθZ Y
(yi ∣ϕZ (vi)) − logqθZ Y

(y j ∣ϕZ (vi)))). (6)

Different from mutual information maximization in learning relevance, we let the positive

((ϕZ (vi),yi)) and negative (ϕZ (vi),y j) sample pairs have close a log-likelihood expectation to

make the IV representations ϕZ (V ) and the outcome Y conditional independent. ωi j is the weight

of each pair of positive and negative samples, and we determine it by the discrepancy between x i

and x j in RBF kernel:

ωi j = softmax(e−
∥x i−x j ∥

2

2σ 2 ) , i, j = 1, 2, . . . ,N , (7)

where σ is a hyperparameter, we use 0.5 for it in our experiments. The weight of positive and

negative sample pairs increases when their treatments X have closer distance. In other words, we

would like to pay attention to the pairs which have closeX values for our conditional independent

constraints.
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4.2 Learning Confounder Representations

We also decompose and learn the representations of confounders that are correlated to both the

treatment and outcome. They are used as exogenous variablesC for counterfactual prediction (see

Section 3). We let the generated confounder representations, i.e., ϕC(V ), are both correlated to

the treatment X and outcome Y variables. With the similar procedure in learning IV representa-

tions, we first use variational distribution qθCX
(X ∣ϕC(V )) to approximate conditional distribution

P(X ∣ϕC(V )), and the corresponding log-likelihood loss function is given as:

LLLD
CX = −

1

N

N

∑
i=1

logqθCX
(x i ∣ϕC(vi)), (8)

Optimal approximation q
θ̂CX
(X ∣ϕC(V )) with parameter θ̂CX is obtained by minimizing (8). We

then minimize the loss function of mutual information maximization between confounder repre-

sentations ϕC(V ) and the treatment X :

LMI
CX = −

1

N 2

N

∑
i=1

N

∑
j=1

(logqθCX
(x i ∣ϕC(vi)) − logqθCX

(x j ∣ϕC(vi))). (9)

The pairs of positive sample (ϕC(vi),x i) and negative sample (ϕC(vi),x j) are used to increase

the relevance between C and X . Also, the variational distribution qθCY
(Y ∣ϕC(V ) for conditional

distribution P(Y ∣ϕC(V )) and its mutual information maximization loss function is given as:

LLLD
CY = −

1

N

N

∑
i=1

logqθCY
(yi ∣ϕC(vi)), (10)

LMI
CY = −

1

N 2

N

∑
i=1

N

∑
j=1

(logqθCY
(yi ∣ϕC(vi)) − logqθCY

(y j ∣ϕC(vi))). (11)

We minimize Equation (10) to get optimal variational approximation q
θ̂CY
(Y ∣ϕC(V )) with param-

eter θ̂CY , and minimize Equation (11) to encourage the confounder representations ϕC(V ) and the

outcome Y to be relevant.

Since conditional on the confounders that contain IV information would introduce bias in causal

inference [42], also, if the information of confounders (i.e., the variables correlated to Y ) is embed-

ded in the IV representations would influence the exclusion condition. Therefore, we minimize

mutual information between the IV representationsϕZ (V ) and confounder representationsϕC(V )
to regularize the learned information in the generated representations. The variational distribu-

tionqθZ X
(ϕC(V )∣ϕZ (V ) for conditional distribution P(ϕC(V )∣ϕZ (V )) and the mutual information

minimization loss function are given as:

LLLD
ZC = −

1

N

N

∑
i=1

logqθZ C
(ϕC(vi)∣ϕZ (vi)), (12)

LMI
ZC =

1

N 2

N

∑
i=1

N

∑
j=1

(logqθZ C
(ϕC(vi)∣ϕZ (vi)) − logqθCY

(ϕC(v j)∣ϕZ (vi))). (13)

We minimize Equation (12) to learn accurate variational approximation qθZ X
(ϕC(V )∣ϕZ (V ) for

the conditional distribution P(ϕC(V )∣ϕZ (V )), and use the variational approximation to regularize

the IV and confounder representations via minimizing Equation (13).

In the above procedure with mutual information constraints, the IV representations ϕZ (V ) at-

tempt to extract information that is correlated to the treatment X and conditional independent

to the outcome Y , while the confounder representations ϕC(V ) are encouraged to be correlated
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to both X and Y . We also employ a regularization term to encourage the information to enter

one of the extracted representations. Therefore, the two representation networks compete for the

corresponding information with their constraints in an adversarial game, which allows us to get

valid IV and confounder representations. We then introduce the general IV-based counterfactual

prediction procedure to further improve the learned representations in the following.

4.3 Representation Calibration

We combine mutual information-based representation learning with a general two-stage counter-

factual prediction procedure to further calibrate the learned representations. More concretely, we

first regress X on IV and confounder representations, i.e., ϕZ (V ) and ϕC(V ),

LX =
1

N

N

∑
i=1

l(x i , f
X (ϕZ (vi),ϕC(vi))), (14)

where f X is the first-stage (treatment) regression network with parameter θf X , and l(⋅, ⋅)measures

square error in our experiments. We then use the estimated treatment X̂ (in the first stage) to

regress the outcome Y in the second stage:

LY =
1

N

N

∑
i=1

l(yi , f
Y (ϕC(vi), f emb(f X (ϕZ (vi),ϕC(vi))))), (15)

where f emb is an embedding network with parameter θf emb for expanding the dimension of X̂ , f Y

is the second-stage (outcome) regression network with parameter θf Y .LXr
andLYr

are minimized

to optimize the parameters of representation, treatment, embedding, and outcome networks to

further improve the decomposed representations.

Note that we assume that the candidate IVs are independent of the unobserved confounders.

Based on our regularization term, the decomposed IV representations meet the relevance and ex-

clusion assumptions. Besides, effect homogeneity and monotonicity assumption are often used in

the analysis of IVs. Based on the structural equation model, our algorithm models a homogeneity

IV to estimate the accurate structural function of the treatment on the outcome [14, 41, 43].

4.4 Model Optimization

As we minimize Equations (3), (5), (8), (10), and (12) to optimize the parameters θZ X , θZY , θCX , θCY ,

and θZC , respectively, each variational distribution approximates the corresponding conditional

distribution. We simplify the expression by combining all the variational approximation loss as

LLLD = LLLD
Z X + LLLD

ZY + LLLD
CX + LLLD

CY + LLLD
ZC . (16)

Notice that each loss term in Equation (16) optimizes the corresponding parameters and will not

interact with each other. We then combine all the mutual information constraints loss functions

of Equations (4), (6), (9), (11), and (13) as

LMI = LMI
Z X + LMI

ZY + α(LMI
CX + LMI

CY ) + ηLMI
ZC , (17)

where α and η are hyper-parameters tuned on a held-out validation set. Equation (17) is minimized

to optimize the representation networks ϕZ (⋅) and ϕC(⋅) with parameters θϕZ and θϕC . Equa-

tion (14) is minimized to optimize parameters of the representation and treatment networks (i.e.,

θϕZ , θϕC , and θf X ), and Equation (15) is minimized to optimize the parameters of the representa-

tion, embedding, and outcome networks (i.e., θϕZ , θϕC , θf emb , and θf Y ). We optimize Equations (16),

(17), (14), and (15) for the corresponding parameters alternately to get optimal decomposed repre-

sentations of IVs and confounders. Finally, we use the generated representations for counterfactual
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ALGORITHM 1: AutoIV: Automatic IV Decomposition

Input: Training set T = (vi ,x i ,yi)
NT

i=1
; variational distribution parameters θZ X , θZY , θCX ,

θCY , and θZC ; IV and confounder representation networks ϕZ (⋅;θϕZ ) and ϕC(⋅;θϕC ), re-

spectively; treatment regression, embedding, and outcome regression networks f X (⋅;θf X ),
f emb(⋅;θf emb ), and f Y (⋅;θf Y ), respectively; hyperparameters α and η; training epochs M ;

batchsize B.

Output: Well-trained ϕZ (⋅; θ̂ϕZ ) and ϕC(⋅; θ̂ϕC )
1: Initialize Adam optimizer and all the parameters;

2: for epoch = 1 to M do

3: Randomly sample B examples from T ;

4: Update variational distribution parameters θZ X , θZY , θCX , θCY , θZC by minimizing LLLD

as Equation (16);

5: Update representation networks parameters θϕZ and θϕC by minimizing LMI as Equa-

tion (17);

6: Update representation and treatment regression network parameters θϕZ , θϕC , θf X by min-

imizing LX as Equation (14);

7: Update representation, embedding, and outcome regression network parameters θϕZ , θϕC ,

θfemb
, θf Y by minimizing LY as Equation (15).

8: end for

prediction with downstream IV-based methods to testify the validity of the learned representations.

The whole optimization procedure of our AutoIV algorithm is stated in Algorithm 1.

5 EXPERIMENTS

In this section, we show the empirical evaluation of applying AutoIV to different downstream

IV-based methods for counterfactual prediction. The validity of the learned IV representations

determines the accuracy of counterfactual prediction of the downstream methods. We implement

the experiments with Python on a device with CPU Intel Xeon Gold 6254, GPU Nvidia RTX 2080TI,

and memory 64 MB.

We list the representative IV-based methods introduced previously and used in our experiments

in the following.

1. DirectNN: directly regress the outcome on the treatment with neural networks. It does not

use any information of the IVs, and can be considered as the general supervised learning.

2. 2SLS (van): vanilla two-stage least squares with linear models.

3. 2SLS (poly): two-stage least squares with polynomial basis and ridge regularization.

4. 2SLS (NN): two-stage regression with neural networks structure.

5. DeepIV [18]: fit the treatment with the IVs via optimizing a mixture density network in the

first stage, and then fit the outcome by sampling from the mixture density network. We use

its original implementation.1

6. KernelIV[37]: a recent kernel method that performs two-stage procedure in reproduce ker-

nel Hilbert spaces. We implement it with Python by referring its original MATLAB version.2

The results of ours and original MATLAB version are consistent.

1https://github.com/jhartford/DeepIV.
2https://github.com/r4hu1-5in9h/KernelIV.
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7. DeepGMM[3]: a variational method based on optimally-weighted GMM . We use its imple-

mentation in CausalML.3

We compare our algorithm AutoIV with the following baseline methods: (1) TrueIV: use true

valid IVs as a prior; (2) RandIV: use random variables (sampled from the same distribution of

the true valid IVs) as IVs; (3) UAS:[11] use equally weight to synthesize IVs from the IV candi-

dates; (4) WAS:[6] synthesize IVs by weighting the IV candidates based on their correlation to the

treatment. We use the above methods to generate IVs (IV representations) and feed them to the

downstream IV-based counterfactual prediction methods to testify the validity of the generated IVs

(IV representations). To evaluate the performance of these IV synthesis methods under different

IV candidates validity scenarios, we set: (1) w/ Z : parts of the valid IVs are given in the IV candi-

dates, and (2) w/oZ : no valid IVs are given in the IV candidates. The latter setting is more practical

in real-world applications and would make the task of synthesizing valid IVs (IV representations)

more challenging as well as the IV-based counterfactual prediction.

5.1 Low-Dimensional Scenarios

Similar to [3], we first implement experiments in low-dimensional scenarios (i.e., all the variables

are in low-dimensional), and the data generating process is:

Y = д(X) + e + σ , X = Z1 + e +γ , Z ∼ Unif([−3, 3]2)
V = [Z ;γ ;σ], e ∼ N(0, 1), γ ,σ ∼ N(0, 0.1),

(18)

where Z are the true valid IVs used as prior in the TrueIV baseline, while RandIV replaces it by

randomly sampling from the same distribution ofZ .σ andγ are noise. VariablesV are observed and

used as the IV candidates which is composed by concatenatingZ ,γ , and σ . e is an unobserved error

term that is correlated to both the treatment X and the outcome Y , д is the true response function

that chosen from the following settings (some are different from [3] to increase the difficulty of

counterfactual prediction):

step ∶ д(X) =
⎧⎪⎪⎨⎪⎪⎩

−1 X ≥ 0

0 X < 0

Linear ∶ д(X) = −X
poly2d ∶ д(X) = −0.1 ∗X 2 − 0.4 ∗X
poly3d ∶ д(X) = 0.05 ∗X 3 + 0.1 ∗X 2 − 0.8 ∗X
abs ∶ д(X) = ∣X ∣

. (19)

We sample 500 samples for training, validation, and test, respectively. The values of Z , X , and Y
are standardized to avoid numerical problems. The representation dimensions of Z and C are set

to the same, which is a hyper-parameter (the robustness of it is discussed in the later experiments).

We plot the true and the estimated response function (i.e., д and д̂) in Figure 2. If the IVs fed in

each method are more valid, the estimated response function would be more closer to the true

response function (blue line). We find that (1) RandIV (orange line) fails badly in each case, while

TrueIV achieves significantly better performance than RandIV, which indicates that IV information

is necessary for removing confounding effect; (2) AutoIV (red line) achieves comparable or even

better performance than TrueIV. It is may because AutoIV employs mutual information constraints

as well as the representation calibration to further improve the IV representations validity, i.e.,

3https://github.com/CausalML/DeepGMM.
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Fig. 2. Response function estimation in low-dimensional scenarios.

Fig. 3. Performance of AutoIV by varying representation dimensions.

enhancing the relevance of the generated IV representations to the treatment and the exclusion to

the outcome.

To further improve the difficulty of the task, we then provide a more challenging data generating

process by introducing confounders C:

Y = д(X) +C1...6 + e + σ , X = Z1...2 +C1...6 + e +γ
Z ∼ Unif([−0.5, 0.5]2), C ∼ Unif([−0.5, 0.5]6)
e ∼ N(0, 1), γ ,σ ∼ N(0, 0.1), V = [Z ;C1∶4;γ ;σ]

, (20)

whereC1...6 denotesC1 +C2 +⋯+C6, Z1...2 denotes Z1 +Z2.C1∶4 is used as a part of IV candidates

for IV representation learning, whileC5∶6 is directly employed for the downstream counterfactual

prediction methods. We report Mean Square Error (MSE) and standard error (Std) of the pre-

dicted counterfactual outcome over 20 runs in Table 1 (the best performance is highlighted in bold

for all tables). Similarly, we first find that RandIV performs poorly than TrueIV, indicating that

valid IVs are important for removing confounding effect and accurate counterfactual prediction.

Besides, the UAS, WAS, and AutoIV methods under w/ Z setting achieve significantly better per-

formance than w/o Z setting, which is probably because the validity of the IV candidates allows IV

ACM Transactions on Knowledge Discovery from Data, Vol. 16, No. 4, Article 74. Publication date: January 2022.



Auto IV: Counterfactual Prediction via Automatic Instrumental Variable Decomposition 74:13

Table 1. Results (MSE ± Std) in Low-dimensional Scenarios Over 20 Runs

Methods IV step abs linear poly2d poly3
DirectNN - 2.86 ± 0.08 2.38 ± 0.05 0.71 ± 0.06 2.34 ± 0.17 1.71 ± 0.07

2SLS (van)

RandIV 2.72 ± 0.82 2.61 ± 0.40 0.33 ± 0.31 1.75 ± 0.80 1.69 ± 0.77
TrueIV 0.77 ± 0.07 2.05 ± 0.10 0.09 ± 0.06 0.40 ± 0.04 0.25 ± 0.06
UAS (w/o Z ) 3.41 ± 0.17 3.59 ± 0.17 0.95 ± 0.10 3.02 ± 0.23 2.34 ± 0.07
UAS (w/ Z ) 2.15 ± 0.14 2.76 ± 0.12 0.28 ± 0.04 1.76 ± 0.14 1.25 ± 0.08
WAS (w/o Z ) 3.39 ± 0.16 3.58 ± 0.17 0.94 ± 0.10 3.00 ± 0.23 2.32 ± 0.07
WAS (w/ Z ) 2.10 ± 0.18 2.76 ± 0.08 0.28 ± 0.09 1.72 ± 0.18 1.25 ± 0.10
AutoIV (w/o Z ) 1.20 ± 1.96 1.11 ± 0.09 0.00 ± 0.00 0.22 ± 0.13 0.21 ± 0.06
AutoIV (w/ Z ) 0.38 ± 0.03 1.41 ± 0.87 0.00 ± 0.00 0.21 ± 0.08 0.19 ± 0.04

2SLS (poly)

RandIV 2.18 ± 0.70 2.21 ± 0.38 0.87 ± 0.15 1.85 ± 0.71 1.28 ± 0.28
TrueIV 0.86 ± 0.16 1.96 ± 0.13 0.11 ± 0.07 0.43 ± 0.07 0.28 ± 0.06
UAS (w/o Z ) 3.37 ± 0.14 3.48 ± 0.28 0.98 ± 0.06 3.00 ± 0.18 2.32 ± 0.13
UAS (w/ Z ) 2.11 ± 0.17 2.51 ± 0.31 0.28 ± 0.04 1.63 ± 0.12 1.23 ± 0.09
WAS (w/o Z ) 3.34 ± 0.15 3.55 ± 0.28 0.98 ± 0.06 2.92 ± 0.22 2.30 ± 0.11
WAS (w/ Z ) 2.06 ± 0.19 2.50 ± 0.28 0.28 ± 0.10 1.59 ± 0.17 1.26 ± 0.09
AutoIV (w/o Z ) 0.39 ± 0.02 0.41 ± 0.11 0.00 ± 0.00 0.17 ± 0.08 0.19 ± 0.05
AutoIV (w/ Z ) 0.39 ± 0.02 0.28 ± 0.04 0.00 ± 0.00 0.28 ± 0.21 0.18 ± 0.04

2SLS (NN)

RandIV 1.26 ± 0.04 2.09 ± 0.26 0.97 ± 0.05 0.99 ± 0.07 1.02 ± 0.02
TrueIV 1.04 ± 0.12 1.99 ± 0.20 0.14 ± 0.02 0.58 ± 0.06 0.32 ± 0.08
UAS (w/o Z ) 2.46 ± 0.09 3.33 ± 0.32 0.97 ± 0.05 2.19 ± 0.15 2.08 ± 0.06
UAS (w/ Z ) 1.26 ± 0.04 2.12 ± 0.34 0.97 ± 0.05 0.99 ± 0.07 1.02 ± 0.03
WAS (w/o Z ) 2.45 ± 0.06 3.42 ± 0.31 0.97 ± 0.05 2.20 ± 0.12 2.13 ± 0.10
WAS (w/ Z ) 1.82 ± 0.17 2.68 ± 0.20 0.36 ± 0.09 1.61 ± 0.15 1.17 ± 0.10
AutoIV (w/o Z ) 0.47 ± 0.17 0.50 ± 0.18 0.30 ± 0.23 0.50 ± 0.16 0.33 ± 0.16
AutoIV (w/ Z ) 0.37 ± 0.09 0.35 ± 0.06 0.25 ± 0.09 0.45 ± 0.30 0.26 ± 0.14

DeepIV

RandIV 1.50 ± 0.09 1.76 ± 0.33 0.90 ± 0.05 1.41 ± 0.11 1.15 ± 0.11
TrueIV 1.34 ± 0.09 1.69 ± 0.26 0.72 ± 0.05 1.33 ± 0.12 1.01 ± 0.09
UAS (w/o Z ) 1.64 ± 0.11 1.95 ± 0.30 0.93 ± 0.06 1.53 ± 0.21 1.28 ± 0.13
UAS (w/ Z ) 1.59 ± 0.08 1.82 ± 0.24 0.71 ± 0.06 1.37 ± 0.13 1.13 ± 0.07
WAS (w/o Z ) 1.77 ± 0.16 1.81 ± 0.29 0.94 ± 0.07 1.49 ± 0.15 1.34 ± 0.12
WAS (w/ Z ) 1.59 ± 0.12 1.76 ± 0.30 0.70 ± 0.07 1.38 ± 0.12 1.08 ± 0.09
AutoIV (w/o Z ) 0.66 ± 0.16 0.90 ± 0.13 0.70 ± 0.18 0.80 ± 0.14 0.86 ± 0.12
AutoIV (w/ Z ) 0.72 ± 0.17 0.86 ± 0.08 0.63 ± 0.11 0.71 ± 0.20 0.67 ± 0.13

KernelIV

RandIV 1.55 ± 0.17 4.79 ± 0.13 0.94 ± 0.11 1.04 ± 0.02 1.10 ± 0.15
TrueIV 1.24 ± 0.11 3.67 ± 0.68 0.67 ± 0.06 1.01 ± 0.02 0.99 ± 0.03
UAS (w/o Z ) 3.15 ± 0.28 5.42 ± 0.13 0.92 ± 0.11 2.41 ± 0.14 1.86 ± 0.09
UAS (w/ Z ) 2.37 ± 0.32 5.04 ± 0.21 0.67 ± 0.06 1.77 ± 0.07 1.22 ± 0.38
WAS (w/o Z ) 3.22 ± 0.44 5.39 ± 0.16 0.94 ± 0.11 2.48 ± 0.26 1.88 ± 0.09
WAS (w/ Z ) 2.40 ± 0.24 4.81 ± 0.40 0.67 ± 0.06 1.77 ± 0.09 1.04 ± 0.02
AutoIV (w/o Z ) 0.93 ± 0.05 1.07 ± 0.05 0.92 ± 0.08 1.03 ± 0.09 0.90 ± 0.36
AutoIV (w/ Z ) 0.80 ± 0.17 0.90 ± 0.04 0.78 ± 0.09 0.78 ± 0.27 0.89 ± 0.10

DeepGMM

RandIV 2.03 ± 0.62 2.53 ± 0.31 0.86 ± 0.21 2.16 ± 0.48 1.35 ± 0.43
TrueIV 1.03 ± 0.10 1.69 ± 0.28 0.12 ± 0.05 0.48 ± 0.08 0.32 ± 0.14
UAS (w/o Z ) 3.65 ± 0.13 2.23 ± 0.76 1.00 ± 0.07 3.53 ± 0.65 2.32 ± 0.32
UAS (w/ Z ) 2.23 ± 0.07 2.33 ± 0.60 0.47 ± 0.04 1.75 ± 0.19 1.12 ± 0.14
WAS (w/o Z ) 3.74 ± 0.14 2.21 ± 0.81 1.01 ± 0.07 3.47 ± 0.50 2.31 ± 0.31
WAS (w/ Z ) 2.22 ± 0.18 2.33 ± 0.59 0.43 ± 0.10 1.75 ± 0.18 1.13 ± 0.15
AutoIV (w/o Z ) 0.71 ± 0.36 0.66 ± 0.58 0.44 ± 0.29 0.38 ± 0.48 0.37 ± 0.36
AutoIV (w/ Z ) 0.69 ± 0.43 0.35 ± 0.42 0.28 ± 0.30 0.22 ± 0.17 0.24 ± 0.17

synthesis methods to generate more valid IV representations. It is worth noting that most of

the results under w/o Z setting with AutoIV method show better counterfactual prediction

performance even compared with other methods under w/ Z setting. It suggests that AutoIV

generates valid IV representations even there is no IV candidate is valid, and we attribute the
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Table 2. Ablation Experiments of AutoIV

Methods LZ Xm
+ LZYm

LCXm
+ LCYm

LCZm
LXr
+ LYr

Results

DeepIV

✓ ✓ ✓ 0.95 ± 0.05
✓ ✓ ✓ 0.92 ± 0.06
✓ ✓ ✓ 0.96 ± 0.06
✓ ✓ ✓ 0.98 ± 0.06
✓ ✓ ✓ ✓ 0.86 ± 0.08

KernelIV

✓ ✓ ✓ 0.91 ± 0.09
✓ ✓ ✓ 0.98 ± 0.11
✓ ✓ ✓ 1.11 ± 0.15
✓ ✓ ✓ >10
✓ ✓ ✓ ✓ 0.90 ± 0.04

DeepGMM

✓ ✓ ✓ 0.49 ± 0.25
✓ ✓ ✓ 0.60 ± 0.62
✓ ✓ ✓ 0.68 ± 0.31
✓ ✓ ✓ 0.73 ± 0.57
✓ ✓ ✓ ✓ 0.35 ± 0.42

Fig. 4. Performance of AutoIV by varying the training data size.

Fig. 5. Results of sensitivity analysis of the hyperparameters α (left) and η (right) in the AutoIV algorithm.
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Table 3. Results of High-dimensional Experiments on MNIST Data

with Representation Dimension as 5, 10, and 15

Methods Scenarios RandIV TrueIV AutoIV-5 AutoIV-10 AutoIV-15

2SLS(van)
MNISTZ 1.688 ± 0.229 0.986 ± 0.030 0.994 ± 0.045 1.046 ± 0.055 0.995 ± 0.042
MNISTC 1.657 ± 0.170 1.022 ± 0.046 0.999 ± 0.040 1.031 ± 0.053 1.018 ± 0.047
MNISTZC 2.053 ± 0.307 1.780 ± 0.283 1.006 ± 0.041 1.019 ± 0.040 0.999 ± 0.033

2SLS(poly)
MNISTZ 1.792 ± 1.411 0.977 ± 0.032 0.444 ± 0.142 0.604 ± 0.304 0.530 ± 0.207
MNISTC 1.491 ± 1.307 0.982 ± 0.041 0.426 ± 0.053 0.533 ± 0.207 0.676 ± 0.306
MNISTZC 1.327 ± 0.570 1.001 ± 0.027 0.703 ± 0.219 0.928 ± 0.065 0.976 ± 0.036

2SLS(NN)
MNISTZ 1.382 ± 0.110 1.045 ± 0.068 0.663 ± 0.219 0.369 ± 0.066 0.336 ± 0.043
MNISTC 1.352 ± 0.073 1.074 ± 0.077 0.785 ± 0.196 0.374 ± 0.072 0.323 ± 0.046
MNISTZC 1.501 ± 0.068 1.427 ± 0.076 0.967 ± 0.081 0.881 ± 0.142 0.829 ± 0.224

DeepIV
MNISTZ 1.102 ± 0.0912 1.030 ± 0.054 0.875 ± 0.135 0.891 ± 0.053 0.985 ± 0.117
MNISTC 1.221 ± 0.107 1.590 ± 0.402 0.956 ± 0.118 1.111 ± 0.144 1.191 ± 0.088
MNISTZC 1.163 ± 0.240 1.269 ± 0.336 1.047 ± 0.033 1.191 ± 0.119 1.088 ± 0.106

KernelIV
MNISTZ 0.978 ± 0.034 0.984 ± 0.038 0.968 ± 0.037 0.967 ± 0.034 0.941 ± 0.044
MNISTC 0.979 ± 0.038 0.979 ± 0.038 0.960 ± 0.033 0.972 ± 0.037 0.977 ± 0.034
MNISTZC 0.984 ± 0.034 0.984 ± 0.034 0.944 ± 0.052 0.966 ± 0.036 0.966 ± 0.036

DeepGMM
MNISTZ 1.040 ± 0.213 0.586 ± 0.225 0.229 ± 0.333 0.064 ± 0.091 0.124 ± 0.227
MNISTX 1.108 ± 0.255 0.923 ± 0.086 0.122 ± 0.182 0.204 ± 0.309 0.495 ± 0.394
MNISTZC 1.051 ± 0.242 0.471 ± 0.129 0.026 ± 0.019 0.012 ± 0.009 0.014 ± 0.014

Fig. 6. Convolutional networks for MNIST data. The data are sampled on the penultimate fully-connected

(FC) layer.

success to the powerful ability of AutoIV in information control that makes the learned IV

representations effectively satisfy the relevance and the exclusion conditions of the valid IVs for

accurate counterfactual prediction.

Since representation dimension is a hyperparameter of the AutoIV algorithm, we design

experiments by changing the representation dimension as 1, 2, 4, 8 (the true response function д
is set to abs) and the results are shown in Figure 3. We find that 2SLS (poly) and 2SLS (NN) is not

robust enough to the changes of representation dimensions, which is may because their models

are relatively simple. We also see that DeepIV and KernelIV in both w/ Z and w/o Z settings are

robust to the representation dimensions. While we note that DeepGMM method performs better

in larger representation dimension setting, which is may because DeepGMM relies more heavily

on parameter size, and higher dimensions bring more parameters in the FC layer of the neural

networks for DeepGMM.
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Table 4. Results of High-dimensional Scenarios on MNIST Data with Different Data Composition

dZ : 5, dF : 10, dA : 4, dU : 1

Methods Scenarios RandIV TrueIV AutoIV

DirectNN
MNISTZ 1.0314 ± 0.0584 - -
MNISTC 1.3136 ± 0.1213 - -
MNISTZ C 1.5746 ± 0.1054 - -

2SLS(van)
MNISTZ 1.8015 ± 0.4056 0.9827 ± 0.0403 0.9897 ± 0.0469
MNISTC 1.6923 ± 0.3306 0.9880 ± 0.0417 1.0100 ± 0.0820
MNISTZ C 1.8393 ± 0.3410 1.4693 ± 0.1897 1.0064 ± 0.0296

2SLS(poly)
MNISTZ 0.9996 ± 0.0573 0.9783 ± 0.0378 0.4085 ± 0.1414
MNISTC 0.9757 ± 0.0446 0.9666 ± 0.0397 0.4965 ± 0.1397
MNISTZ C 0.9815 ± 0.0325 0.9816 ± 0.0324 0.8666 ± 0.1465

2SLS(NN)
MNISTZ 1.1456 ± 0.1052 0.7765 ± 0.0358 0.2601 ± 0.0273
MNISTC 1.3150 ± 0.1590 0.8302 ± 0.0693 0.3698 ± 0.0473
MNISTZ C 1.2535 ± 0.0574 1.1636 ± 0.0886 0.7349 ± 0.2369

DeepIV
MNISTZ 1.0356 ± 0.1509 1.2036 ± 0.2065 0.8174 ± 0.1286
MNISTC 1.1665 ± 0.2003 1.0873 ± 0.1486 1.1090 ± 0.1750
MNISTZ C 1.5355 ± 0.2431 1.2730 ± 0.2021 1.0168 ± 0.0727

KernelIV
MNISTZ 0.9791 ± 0.0392 0.9827 ± 0.0374 0.9583 ± 0.0477
MNISTC 0.9671 ± 0.0370 0.9671 ± 0.0370 0.9604 ± 0.0408
MNISTZ C 0.9826 ± 0.0339 0.9826 ± 0.0339 0.9673 ± 0.0351

DeepGMM
MNISTZ 0.9679 ± 0.1546 0.5502 ± 0.2183 0.3052 ± 0.3722
MNISTC 1.1639 ± 0.2048 0.9097 ± 0.0944 0.1827 ± 0.2632
MNISTZ C 1.0206 ± 0.1458 0.4286 ± 0.0566 0.0074 ± 0.0058

dZ : 10, dF : 5, dA : 4, dU : 1

Methods Scenarios RandIV TrueIV AutoIV

DirectNN
MNISTZ 1.3030 ± 0.0706 - -
MNISTC 1.2205 ± 0.0799 - -
MNISTZ C 1.8299 ± 0.1313 - -

2SLS(van)
MNISTZ 2.0021 ± 0.1951 0.9894 ± 0.0282 1.0096 ± 0.0515
MNISTC 1.7111 ± 0.1561 0.9826 ± 0.0474 1.0242 ± 0.0331
MNISTZ C 1.9091 ± 0.2820 0.9990 ± 0.0394 0.9981 ± 0.0543

2SLS(poly)
MNISTZ 2.5048 ± 2.3093 0.9878 ± 0.0298 0.6709 ± 0.2765
MNISTC 2.0190 ± 1.5183 0.9761 ± 0.0440 0.3794 ± 0.0876
MNISTZ C 1.6373 ± 0.6966 0.9692 ± 0.0310 0.8461 ± 0.1283

2SLS(NN)
MNISTZ 1.3283 ± 0.1149 0.8832 ± 0.0789 0.4526 ± 0.1766
MNISTC 1.1980 ± 0.0629 0.9304 ± 0.0505 0.3484 ± 0.0229
MNISTZ C 1.3864 ± 0.0744 1.0940 ± 0.0645 0.6992 ± 0.1224

DeepIV
MNISTZ 1.1037 ± 0.1253 1.1432 ± 0.1797 0.9850 ± 0.1336
MNISTC 1.2980 ± 0.0987 1.1619 ± 0.2628 1.0055 ± 0.1111
MNISTZ C 1.1620 ± 0.2386 1.5090 ± 0.4130 0.9963 ± 0.0733

KernelIV
MNISTZ 0.9815 ± 0.0219 0.9839 ± 0.0276 0.9404 ± 0.0547
MNISTC 0.9771 ± 0.0427 0.9771 ± 0.0427 0.9613 ± 0.0379
MNISTZ C 0.9769 ± 0.0326 0.9769 ± 0.0326 0.9523 ± 0.0335

DeepGMM
MNISTZ 1.0743 ± 0.1008 0.7820 ± 0.2455 0.0367 ± 0.0535
MNISTC 1.0260 ± 0.1733 0.9021 ± 0.1084 0.2259 ± 0.2791
MNISTZ C 1.1627 ± 0.2468 0.4830 ± 0.1252 0.0107 ± 0.0082

dZ : 10, dF : 10, dA : 4, dU : 1

Methods Scenarios RandIV TrueIV AutoIV

DirectNN
MNISTZ 1.3170 ± 0.0568 - -
MNISTC 1.3577 ± 0.0742 - -
MNISTZ C 1.6820 ± 0.1113 - -

2SLS(van)
MNISTZ 1.6878 ± 0.2286 0.9861 ± 0.0297 1.0464 ± 0.0552
MNISTC 1.6570 ± 0.1699 1.0223 ± 0.0460 1.0312 ± 0.0527
MNISTZ C 2.0527 ± 0.3070 1.7801 ± 0.2825 1.0192 ± 0.0399

2SLS(poly)
MNISTZ 1.7924 ± 1.4106 0.9771 ± 0.0315 0.6043 ± 0.3041
MNISTC 1.4912 ± 1.3071 0.9824 ± 0.0414 0.5331 ± 0.2065
MNISTZ C 1.3272 ± 0.5701 1.0008 ± 0.0267 0.9277 ± 0.0652

2SLS(NN)
MNISTZ 1.3819 ± 0.1103 1.0454 ± 0.0675 0.3687 ± 0.0656
MNISTC 1.3521 ± 0.0727 1.0743 ± 0.0768 0.3740 ± 0.0722
MNISTZ C 1.5010 ± 0.0678 1.4271 ± 0.0759 0.8810 ± 0.1422

DeepIV
MNISTZ 1.1016 ± 0.0912 1.0304 ± 0.0535 0.8910 ± 0.0529
MNISTC 1.2205 ± 0.1069 1.5897 ± 0.4022 1.1111 ± 0.1439
MNISTZ C 1.2625 ± 0.2401 1.2693 ± 0.3363 1.1914 ± 0.1190

KernelIV
MNISTZ 0.9777 ± 0.0336 0.9838 ± 0.0383 0.9668 ± 0.0341
MNISTC 0.9793 ± 0.0377 0.9793 ± 0.0377 0.9724 ± 0.0368
MNISTZ C 0.9842 ± 0.0339 0.9842 ± 0.0339 0.9658 ± 0.0358

DeepGMM
MNISTZ 1.0401 ± 0.2125 0.5864 ± 0.2247 0.0640 ± 0.0906
MNISTC 1.1075 ± 0.2546 0.9226 ± 0.0857 0.2038 ± 0.3093
MNISTZ C 1.0513 ± 0.2420 0.4711 ± 0.1292 0.0123 ± 0.0094
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AutoIV is a data-driven decomposed representation learning method, hence we implement ex-

periments with different training data size settings (д is set to abs) as shown in Figure 4. It illustrates

that AutoIV achieves great performance in different training data size settings. Moreover, larger

data size will increase the decomposed representation learning performance and counterfactual

prediction accuracy. However, it is not evident that the performance of other baseline methods is

related to the training data size.

We then give sensitivity analysis of the hyperparameters, i.e., α and η in our algorithm. We

show the performance of each method in the search space of each hyperparameter in Figure 5.

It illustrates that in general the performance of our AutoIV algorithm is robust to α and η with

different downstream IV-based methods in counterfactual prediction.

To show the effectiveness of each part of the AutoIV algorithm, we conduct ablation studies

by removing each component, including representation learning of Z (LMI
Z X + LMI

ZY ), representa-

tion learning of C (LMI
CX + LMI

CY ), decomposed regularization (LMI
CZ ), and counterfactual prediction

(LX + LY ). We implement the experiments (д is set to abs) on DeepIV, KernelIV, and DeepGMM,

and the results are reported in Table 2. It shows that the necessity of each component in our AutoIV

algorithm. Moreover, the two-stage procedure is shown important for further representation cali-

bration. It is because mutual information constraints only control the information flow, but do not

effectively enable them to be effective IV representations. While the general two-stage calibration

process utilizes the gathered information to further synthesize powerful IV representations.

5.2 High-Dimensional Scenarios

Following [3], we then implement experiments in high-dimensional scenarios with hand-written

digit datasets MNIST [29]. To further testify the representation learning ability of AutoIV, we

consider more complicated data composition that observed variables V contain: (1) IVs Z , (2) con-

founders F (i.e., variables that are related to X and Y ), (3) adjustments A (i.e., variables that are

only related to Y ), (4) and unconcerned variablesU (i.e., variables that are independent of both the

treatment X and outcome Y ). The data generating process is given as:

Y = д(X) + E[F ] + E[A] + e, X = E[Z] + E[F ] + e
Z ∼ N(0, 1)dZ , F ∼ N(0, 1)d F , A ∼ N(0, 1)dA

U ∼ N(0, 1)dU , C = [F ,A,U ], V = [Z ;C], e ∼ N(0, 1),
(21)

where dZ , dF , dA, dU are the dimensions of Z , F , A,U , respectively. Since UAS and WAS are only

valid in the linear setting and are not competent to handle high-dimensional non-linear data, hence

we compare RandIV, TrueIV, and AutoIV in the experiments of high-dimensional scenarios. Sine

the non-linearity and high-dimension of data increase the difficulty of the task, we only consider

w/ Z setting in these experiments. The response function д is set to be abs. We then give the

following experimental settings:

MNISTZ ∶ Z
Conv←� MNSITrand

MNISTC ∶ C
Conv←� MNSITrand

MNISTZC ∶ Z
Conv←� MNSITrand,C

Conv←� MNSITrand

, (22)

where MNSITrand denotes randomly sampling from MNIST datasets. We adopt convolutional archi-

tecture (see Figure 6) to handle original MNIST images by following [3, 18], Z and C are sampled

on the penultimate FC layer with given dimensions.

We sample 1,000 data points for training, validation, and test, respectively. We set 10, 10, 4,

and 1 for dZ , dF , dA, and dU , respectively, and let representation dimension be 5 (AutoIV-5), 10
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(AutoIV-10), 15 (AutoIV-15). The results are reported in Table 3 with MSE and Std of 20 runs. We

find that the results of each method with AutoIV are significantly better than those with RandIV

and superior to those with TrueIV. From the settings of AutoIV-5, AutoIV-10, and AutoIV-15, we

see that the performance of AutoIV algorithm is robust to the change of representation dimension,

showing its effectiveness in IV representation learning.

We then analyze the performance of AutoIV with different dimensions of data composition and

report the results in Table 4. It indicates that AutoIV is competent to generate valid IV represen-

tations in different data composition settings. All the experimental settings again show AutoIV’s

powerful representation learning ability in generating valid IV representation for accurate coun-

terfactual prediction, which is even better than directly using the true valid IVs.

Overall, these results highlight the great decomposed representation learning ability of our Au-

toIV algorithm in automatically generating the representation serving the role of IVs for accurate

IV-based counterfactual prediction.

6 CONCLUSIONS

In this article, we tackle the problem of decomposing and generating valid IV representations

from the observed variables (i.e., the IV candidates). We relax the assumptions and conditions

used by previous methods in handling this problem. We propose a novel AutoIV algorithm to

decompose and learn valid representations of IVs automatically from the observed variables. We

learn the IV representations by employing mutual information constraints, making the learned IV

representations satisfy the conditions of the valid IVs in an adversarial game. Extensive empirical

results in both low-dimensional and high-dimensional scenarios show the effectiveness of the

AutoIV algorithm in generating IV representations and using them for IV-based counterfactual

prediction with the downstream methods. The proposed AutoIV algorithm is an important addition

to the toolkit of causal inference and IV-based counterfactual prediction.
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