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Unsupervised domain adaptation (UDA) aims to learn transferable knowledge from a labeled source
domain and adapts a trained model to an unlabeled target domain. To bridge the gap between source
and target domains, one prevailing strategy is to minimize the distribution discrepancy by aligning their
semantic features extracted by deep models. The existing alignment-based methods mainly focus on
reducing domain divergence in the same model layer. However, the same level of semantic information
could distribute across model layers due to the domain shifts. To further boost model adaptation perfor-
mance, we propose a novel method called Attention-based Cross-layer Domain Alignment (ACDA), which
captures the semantic relationship between the source and target domains across model layers and cal-
ibrates each level of semantic information automatically through a dynamic attention mechanism. An
elaborate attention mechanism is designed to reweight each cross-layer pair based on their semantic
similarity for precise domain alignment, effectively matching each level of semantic information during
model adaptation. Extensive experiments on multiple benchmark datasets consistently show that the
proposed method ACDA yields state-of-the-art performance.

� 2022 Elsevier B.V. All rights reserved.
1. Introduction

Deep learning has achieved remarkable progress in diverse
areas of computer vision like visual recognition [1] and many
more. The training of deep learning models heavily relies on the
independent and identical distributed (i.i.d.) assuming that train-
ing and test datasets should have the same statistical distribution.
However, in real world applications, usually models trained on one
dataset face test datasets which have totally different and distinct
data distributions. This results in severe performance degradation
because the features of the datasets are completely different from
each other. Unsupervised domain adaptation (UDA) [2–5] is intro-
duced to tackle the distribution/domain shift problem by learning
transferable knowledge from a labeled source (training) domain
and adapting the model to an unlabeled target (test) domain.

One prevailing strategy for UDA is to minimize the distribution
discrepancy of the source and target data by aligning their seman-
tic features extracted by deep models. However, the existing
alignment-based algorithms [6–9] mostly reduce domain diver-
gence by matching semantic features of the source and target data
in the same layer of model, while recent studies [10,11] have
shown that the same level of semantic information could distribute
across model layers due to domain shifts, which we call the seman-
tic dislocation problem. This problem makes different levels of
semantic information be mismatched during the same-layer fea-
ture alignment process in the previous methods, bringing negative
transfer gain to model adaptation performance. In comparison, we
propose to match the same level of semantic information of the
source and target domains across model layers for precise domain
alignment, as shown in Fig. 1.

In order to further facilitate accurate semantic alignment and
minimize domain divergence, we propose a novel method called
Attention-based Cross-layer Domain Alignment (ACDA). This method
captures and calibrates the semantic relationship between the
source and target domains across the different layers of the model.
Specifically, we first minimize divergence between each pair of the
extracted semantic features of the source and target data. To cali-
brate each level of semantic information, a dynamic attention
mechanism is designed to reweight the divergence minimization
loss of each pair of the cross-layer on the basis of their semantic
similarities. In this way, different levels of semantic information
are aligned automatically, effectively minimizing the distribution
discrepancy between the source and target domains and improving
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Fig. 1. Comparison between (a) same-layer alignment adopted by previous methods and (b) cross-layer semantic alignment introduced by this work. Instead of directly
aligning same-layer features, we match the same level of semantic information across model layers of source and target to further facilitate domain divergence minimization
and improve model adaptation performance.
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model adaptation capability. Extensive experiments on various
standard domain adaptation benchmark datasets, i.e., Office-31,
Office-Home, ImageCLEF-DA, and VisDA-2017, show that the pro-
posed method ACDA outperforms other state-of-the-art UDA
methods.

In summary, this paper has the following contributions:

� We point out the semantic dislocation problem that each level
of semantic information can be distributed across different lay-
ers of the model due to the domain shifts, which could bring
negative transfer gain to previous methods with same-layer
semantic feature alignment.

� In order to address the above problem, we propose a novel
method called attention-based cross-layer domain alignment
to match the same level of semantics by reweighting each
cross-layer pair through a semantic similarity based dynamic
attention mechanism.

� Extensive experiments show the superior performance of our
method in comparison to other state-of-the-art UDA
approaches on multiple standard benchmark datasets.

The rest of this paper is organized as follows. In Section 2,
related works about unsupervised domain adaptation and atten-
tion mechanism are briefly introduced. In Section 3, the framework
and algorithm of the proposed method are described. In Section 4,
the results of experiments are reported and discussed. In Section 5,
we conclude the investigation with a future research
recommendation.

2. Related Work

2.1. Unsupervised Domain Adaptation

Unsupervised domain adaptation (UDA) [3–5,12–24] aims to
adapt the model trained on a labeled source domain to an unla-
beled target domain when there is distinct domain divergence. A
series of UDA algorithms [25–30] have been proposed by employ-
ing an adversarial learning strategy where the semantic features of
the source and target data are aligned for reducing domain diver-
gence. For example, a representative framework DANN [31] utilizes
the generator to extract domain-invariant semantic features that
2

can fool the discriminator with a gradient reversal layer. Long
et al. [25] extend this framework and reduce domain divergence
by considering conditional probability distributions. Further, Shao
et al.[32] use pixel-level adversarial adaptation as a constraint for
feature-level adaptation, which can avoid the image quality degra-
dation problem while mitigating the low-level domain variance.
Yang et al.[33]. developed an adversarial network to learn graph-
aligned representations with similar distributional structure in
the source and target domains, which not only learns domain-
invariant representations, but also retains structural information
in each domain. However, the model adaptation performance of
these methods rely on the carefully designed network structure
and adversarial training process, which could be unstable and inef-
ficient [34].

Directly minimizing domain divergence by aligning the seman-
tic features of the source and target domains extracted by deep
models is the usual way to address the domain shifts, much atten-
tion has been paid to this approach [6–9]. In these approaches the
discrepancy of the semantic features of the source and target
domains is reduced using the distance matrix, such as maximum
mean discrepancy (MMD) [6] and multi-kernel MMD (MK-MMD)
[7–9]. For example, Long et al. [6] propose to learn a generalizable
model by matching the semantic feature embeddings of different
domains. However, most of these previous alignment-based meth-
ods consider the semantic relationship in the same layer of the
model, while each level of semantic information can be distributed
across the layers due to the domain shifts. Recently, Joint adapta-
tion network (JAN) [8] considers the semantic relationship in dif-
ferent layers, but this method can not effectively reweight the
implemented cross-layer constraint, which results in an insuffi-
cient domain adaptation. In this paper, we boost model adaptation
performance by exploring the relationship of cross-layer semantic
information [10]. Specifically, we introduce an attention-based
semantic matching method to automatically reweight the diver-
gence minimization loss of each pair of cross-layer.

2.2. Attention mechanism

In recent years, attention mechanisms [35], especially self-
attention [36], is widely adopted in various tasks of computer
vision [37,38,12]. The self-attention mechanism learns a represen-
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tation of a sequence by reweighting each position according to its
corresponding similarity/importance. A generic process of the self-
attention consists of the following steps: (1) Obtain semantic fea-
ture embeddings i.e., query, key, and value of the original features;
(2) Calculate the similarity between query and key, and normalize
it to obtain the weights; (3) Use the weights to synthesize the
value. For example, [37] proposes to capture rich contextual
dependencies for scene segmentation by obtaining attention in
both spatial and channel dimensions. It first calculates the atten-
tion map of the original semantic features by performing the inner
dot product of the features, then exploits the generated weights to
synthesize the original semantic features. This emphasizes their
important semantic information. Inspired by it, we design a
dynamic attention mechanism to automatically capture the
cross-layer domain-invariant semantic relationship based on the
semantic similarity in both spatial and channel dimensions. The
proposed attention mechanism precisely reduces domain diver-
gence and effectively improves model adaptation towards new tar-
get domain..

Some attention-based DA works, such as [38] proposes to use
attention for region-level and image-level context learning by
exploring relationship in original images and the semantic fea-
tures; [39] introduces a spatial attention pyramid network to cap-
ture context information at different scales; [40] puts forward
generative attention adversarial classification network to allows
a discriminator to discriminate the transferable regions; [41] pro-
poses attention-based multi-source DA framework by considering
domain correlations and alleviating effect of the dissimilar
domains. However, these methods only consider the semantic fea-
tures in the final model layer, while our work matches the same
level of semantic information across model layers through the
elaborate dynamic attention mechanism.

3. Method

In this section, we begin with the problem definition of unsu-
pervised domain adaptation (UDA), and then introduce the details
of the proposed method ACDA.

3.1. Problem Definition

Let the labeled source data be denoted as Ds ¼ xsi ; y
s
i

� �� �ns
i¼1,

where xsi is the i-th source sample, ysi is the corresponding class
label, and ns is the source data size. The unlabeled target data is
denoted as Dt ¼ xti

� �nt
i¼1, where xti is the i-th target sample, and nt

is the target data size. In UDA setting, the source and target data
are sampled from different distributions psðx; yÞ and ptðx; yÞ,
respectively. The source and target domain shares the same label
space C ¼ f1;2; � � � ;Kg and we assume there are K classes in both
domains. The goal of UDA is to train a predictive model with the
labeled source dataDs and the unlabeled target dataDt for improv-
ing the performance of the model on the target domain.

3.2. Cross-Layer Semantic Alignment

Since each level of semantic information can be distributed
across the layers of a model due to the domain shifts, hence we
propose to match the same level semantic information of the
source and target domains across the layers of the model for pre-
cise domain alignment. The framework and algorithm of the pro-
posed ACDA method is shown in Fig. 2 and Algorithm1. The
feature extractor G extracts different levels of semantic features
of the source and target data, and the classifier C uses the high-
level information of the features (i.e., top layers of a model) for
object classification. Different from directly aligning semantic fea-
3

tures within the same layers of the model, we learn the cross-layer
semantic relationship and reweight each divergence minimization
loss of each cross-layer pair according to the semantic similarity
calculated using a dynamic attention mechanism. The detail is
given in the following section.

3.3. Model Pretraining

To initialize a discriminative model, we use the labeled source
data to train the model F, i.e., F ¼ C � G, where G and C are the fea-
ture extractor and classifier, respectively. The cross-entropy classi-
fication loss training objective for model F can be defined as:

Lce ¼ �Eðxs ;ysÞ�Ds

XK
k¼1

1½k¼ys � log Ck GðxsÞð Þð Þ; ð1Þ

where K is the number of classes, and Ck is k-dimensional of the
output of the classifier C. We use Lce to pretrain the model for ini-
tializing its discrimination capability.

3.4. Cross-Layer Alignment

After model pretraining, the initialized model can extract
semantic features of source and target data. However, each level
of semantic information can be distributed across layers because
of the semantic dislocation problem. Therefore, we then propose
to align cross-layer semantic features of the source and target
domains.

Convolution-based projection. Since the original semantic fea-
tures may have different sizes, we project the feature maps to
match the size. Let the original semantic features of m layers
extracted by the feature extractor G of the source and target are
qs ¼ fqs

1; q
s
2; . . . ; q

s
mg and qt ¼ fqt

1; q
t
2; . . . ; q

t
mg, respectively. Then

we use a convolution-based projection to project all the semantic
features to the same size. That is,

lsi ¼ Ps
i ðqs

i Þ; lti ¼ Pt
i ðqt

i Þ; i ¼ 1;2; . . . ;m ð2Þ
where Ps

i and Pt
i are the convolution mapping function of the i-th to

last layer for the source and target domains, respectively (see
details in experiment section). After the projection, all the semantic
features are in the same size, which allows us to implement cross-
layer semantic alignment.

Cross-layer semantic alignment. Since each level of semantic
information could distribute across layers, we propose to align
each pair of cross-layer semantic features. For simplicity, let the
semantic features extracted from the target and source domain
in the convolution layers (after projection) be lti and lsj , respectively;
and the final semantic features extracted from the target and
source domains using fully-connected layer are f t and f s, respec-
tively. For each cross-layer semantic feature pair ði; jÞ of target
and source domains, we minimize the domain divergence with
the distance matrix:

distðlti ; lsj Þ ¼
1

b2
s

Xbs
t¼1

Xbs
u¼1

k lsj;t ; l
s
j;u

� �
þ 1

b2
t

Xbt
t¼1

Xbt
u¼1

k lti;t ; l
t
i;u

� �

� 2
bsbt

Xbs
t¼1

Xbt
u¼1

k lsj;t ; l
t
i;u

� �
; ð3Þ

where k a1; a2ð Þ ¼ / a1ð Þ;/ a2ð ÞÞh i is a kernel function, bs and bt are
batch-sizes of source and target data, respectively, respectively. A

characteristic kernel kðlsj ; lti Þ ¼ /ðlsj Þ;/ðlti Þ
D E

is defined as a convex

combination of o positive semi-definite kernels fkug, i.e.,
K , k ¼ Po

u¼1buku :
Po

u¼1bu ¼ 1;bu >¼ 0;8u� �
[6,8]. By minimizing

the cross-layer semantic feature pairs of source and target data, we



Fig. 2. The proposed Attention-based Cross-layer Domain Alignment (ACDA) framework. The feature extractor G extracts semantic features of the source and target data.
After matching the size of feature through projection, we conduct cross-layer semantic alignment with a dynamic attention mechanism to reweight the divergence
minimization loss of each cross-layer pair for precise domain alignment.
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reduce the domain divergence between the source and target
domains.

Attention allocation module. Since the same level of semantic
information could be contained in different layers, we design a
dynamic attention mechanism to automatically reweight the
divergence minimization loss of each cross-layer pair. Specifically,
we reweight each pair of semantic features according to their
semantic similarity in both spacial and channel dimensions, that is,

wi;j ¼ 1
2

exp avg r lti
� �

� r lsj
� �T

� 	
 �

Xm
u¼1

exp avg r lti
� �

� r lsu
� �T� �h iþ 1

2

�
exp avg r lti

� �T
� r lsj
� �� 	
 �

Xm
u¼1

exp avg r lti
� �T

� r lsu
� �� 	
 � ð4Þ

where rð�Þ is a reshaping operation that maps semantic features
with size c � h�w to the size c � ðh�wÞ. The avg operator shows
the global average pooling operation. We take the average of each
attention similarity matrices generating a real number value, which
represents the average semantic similarity between each cross-
layer pair. The first term and the second term of Eq. 4 illustrate
the spatial and channel semantic relationships, respectively. We
normalize the final similarity and obtain the weight wi;j for each
cross-layer pair ði; jÞ, which is used to reweight the cross-layer
divergence minimization loss:

Lcross�ali ¼
X
i

X
j

wij � dist lti ; l
s
j

� �
; ð5Þ

where Lcross�ali is cross-layer semantic alignment loss of features.
We also minimize the divergence of logits (semantic features in
the final fully-connected layer from G), i.e., f s and f t , that is,

Lsame�ali ¼ distðf s; f tÞ: ð6Þ
Finally, we integrate the cross-layer semantic alignment con-

straint of features in the convolution layers, i.e., Lcross�ali, and the
same-layer semantic alignment constraint of logits, i.e., Lsame�ali

into a unified semantic alignment loss Lali:

Lali ¼ dLcross�ali þ ð1� dÞLsame�ali; ð7Þ
4

where d is a trade-off hyper-parameter. Note that to further facili-
tate domain divergence minimization, we introduce label-
conditioned cross-layer semantic alignment. Inspired by the recent
work [42], we obtain pseudo labels of the unlabeled target data
using k-means clustering and align the cross-layer semantic feature
pairs in the same class.

3.5. Optimization

The optimization of our method consists of two steps as stated
in Algorithm1. The first step is to pretrain the model with the
labeled source data by using objective loss function given in Eq.
1. The second step is to implement cross-layer semantic alignment
by using the combination of supervised loss and alignment loss,
that is,

Lall ¼ Lce þ k �Lali; ð8Þ
where k is a hyper-parameter to keep an appropriate balance
between the cross-entropy loss Lce and the cross-layer semantic
alignment loss Lali. We also analyze the sensitivity of the hyper-
parameters in the experiments.

4. Experiments

In this section, we evaluate the performance of our ACDA
method by comparing it with state-of-the-art UDA methods on
four publicly available datasets: Office-31, Office-Home,
ImageCLEF-DA, and VisDA. We conduct analyses to provide
insights on the design each component of our model.

4.1. Dataset

In this section, first, we introduce the datasets considered for
our experiments. These datasets are Office-31, Office-Home,
ImageCLEF-DA, and VisDA. Some example images are shown in
the Fig. 3.

Office-31 is a popular dataset for domain adaptation, It has
4011 images with 31 classes, these images are collected from three
different areas: 1. Amazon ’A’: images downloaded from amazon.-
com, 2. Webcame ’W’: images captured using web cameras, 3.
DSLR ’D’: images captured using Digital SLR cameras. These images
contain different photographic settings and viewpoints. We
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evaluate the domain adaptation tasks in 6 different settings:
A ! W;D ! W;W ! D;A ! D;D ! A, and W ! A, in each pair of
task, the former is used as the labeled source domain and the latter
is used as the unlabeled target domain.

Office-Home is a well organized and more challenging dataset,
which contains 15,500 images with 65 categories from 4 domains.
In detail, Art (Ar) denotes artistic depictions for object images, Cli-
part (Cl) is the picture collection of clipart, Product (Pr) is object
images with a clear background which is similar to Amazon cate-
gory in Office-31 dataset, and Real-World (Rw) is object images
collected with a regular camera. We use all possible combinations
of source and target setting. We get 12 such combinations to per-
form the experiments.

ImageCLEF-DA is a benchmark dataset for ImageCLEF 2014
domain adaptation challenge, created by selecting common cate-
gories among the following three public datasets, namely,
Caltrch-256 (C), ImageNet ILSVRC 2012 (I), and Pascal VOC 2012
(P). There are 50 images in each category and 600 images in each
domain. We adopt six transfer tasks of domain adaptation: I!P,
P!I, I!C, C!I, C!P and P!C.

VisDA is also a challenging dataset which has images from two
different domains (i.e. simulated images to real images). It contains
152,397 training images and 55,388 validation images in 12
classes. We follow the training and testing protocols of [47,25].
The training of the models has been done using labeled source data
and unlabeled target data. The model then test on the target data
for unsupervised domain adaptation.
4.2. Baseline Methods

We compare our ACDA methods with the state-of-the-art unsu-
pervised domain adaptation methods, i.e., GAKT [3], DRMEA [4],
CDAN + TFLGM [5], DAN [6], JAN [8], GAACN [12], CTSN [13],
SAFN + ENT* [14], rRevGrad + CAT [15], SymNets [16], GSDA [20],
RWOT [21], GCAN [24], CDAN [25], DANN [31], CBST [43], MCD
[44], BSP + DANN [45] and SCA [46]. We show the accuracy of
the methods mentioned in their published works.
4.3. Implementation Details

Following previous works [25,44], we use a pretrained ResNet-
50 as our backbone for the experiments on Office-31, Office-Home,
Fig. 3. Image examples of Office-31, Office-H
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and ImageCLEF-DA datasets. Whereas we use a pretrained ResNet-
101 for the experiments on VisDA dataset. We change the final
fully-connected (FC) layer of the original networks with a task-
specific FC layer to compose feature extractor G. One more FC layer
is attached to it for object classification as classifier C. We use mini-
batch stochastic gradient descent (SGD) with momentum of 0.9 to
train the network. The semantic features used for cross-layer align-
ment are the features extracted by the last three blocks of the net-
work. We adopt a three-layer residual convolution networks to
match the size of semantic features in different layers of model.
We set the learning rate to 0.001. We set the hyper-parameters
delta and lambda to 0.7 and 0.3 in the Eq. 7 and Eq. 8 to analyse
the effects on performance.
4.4. Main Results

Office-31. Table 1 shows the average classification accuracy for
the six different settings on the office-31 dataset. ACDA shows a
significant improvement over all other baseline UDA methods,
achieving the state-of-the-art performance. It is also worth to men-
tion that our ACDA method achieves the best performance on half
the domain adaptation setting, which indicates that our cross-layer
semantic alignment strategy is significantly effective in compar-
ison to the other alignment-based methods [6,8].

Office-Home. We report the results of the experiments on the
Office-Home dataset in Table 2. The results show that our ACDA
method outperforms other baseline methods for most of the data-
set settings. Our method improves performance for JAN by around
12.2%, which also considers the relationship between different
layer of the model. We can demonstrate it as the effectiveness of
attention-based cross-layer semantic alignment strategy, which
effectively calibrates each level of semantic information and facil-
itate precise domain adaptation.

ImageCLEF-DA. The results on the ImageCLEF-DA dataset are in
Table 3. For half set of training dataset setting, our method outper-
forms other state-of-the-art methods and achieves the highest
average classification accuracy.

VisDA. VisDA is a huge dataset with 152,397 and 55,388 image
samples for training and validation. The experiments on VisDA
dataset is reported in Table 4. It is observed that our ACDA method
significantly outperforms the other baseline methods on this
dataset. The reason is that our ACDA method needs large data to
ome, ImageCLEF-DA, and VisDA datasets.



Table 1
Classification accuracy (%) for unsupervised domain adaptation on Office-31 dataset (mean 	 standard error over 3 runs).

Method A!W D!W W!D A!D D!A W!A Avg.

ResNet-50 [1] 68.4	0.2 96.7	0.1 99.3	0.1 68.9	0.2 62.5	0.3 60.7	0.3 76.2
DAN [6] 80.5	0.4 97.1	0.2 99.6	0.1 78.6	0.2 63.6	0.3 62.8	0.2 80.4
DANN [31] 82.0	0.4 96.9	0.2 99.1	0.1 79.7	0.4 68.2	0.4 67.4	0.5 82.2
JAN [8] 85.4	0.3 97.4	0.2 99.8	0.2 84.7	0.3 68.6	0.3 70.0	0.4 84.3
CBST [43] 87.8	0.8 98.5	0.1 100.0	0.0 86.5	1.0 71.2	0.4 70.9	0.7 85.8
MCD [44] 89.6	0.2 98.5	0.1 100.0	0.0 91.3	0.2 69.6	0.1 70.8	0.3 86.6
CDAN [25] 93.1	0.2 98.2	0.2 100.0	0.0 89.8	0.3 70.1	0.4 68.0	0.4 86.6
BSP + DANN [45] 93.0	0.2 98.0	0.2 100.0	0.0 90.0	0.4 71.9	0.3 73.0	0.3 87.7
GCAN [24] 82.7	0.1 97.1	0.1 99.8	0.1 76.4	0.5 64.9	0.1 62.6	0.3 80.6
SAFN + ENT* [14] 90.3 98.7 100.0 92.1 73.4 71.2 87.6
rRevGrad + CAT [15] 94.4	0.1 98.0	0.2 100.0	0.0 90.8	1.8 72.2	0.6 70.2	0.1 87.6
SymNets [16] 90.8	0.1 98.8	0.3 100.0	0.0 93.9	0.5 74.6	0.6 72.5	0.5 88.4
SRDC [23] 95.7	0.2 99.2	0.1 100.0	0.0 95.8	0.2 76.7	0.3 77.1	0.1 90.8
GSDA [20] 95.7 99.1 100.0 94.8 73.5 74.9 89.7
GAACN [12] 90.2 98.4 100.0 90.4 67.4 67.7 85.6
SCA [46] 93.6	0.1 98.0	0.2 100.0	0.0 89.5	0.1 72.6	0.3 72.4	0.3 87.7
CDAN + TFLGM [5] 95.3	0.3 99.0	0.1 100.0	0.0 94.1	0.2 72.5	0.2 71.5	0.1 88.7
ACDA 94.57	0.3 98.48	0.49 99.93	0.12 96.44	0.27 78.53	0.35 77.70	0.91 90.94
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capture and align the same level of semantic information among all
the different layers of the model during training in domain adapta-
tion setting..

4.5. Discussions

Sensitivity analysis. In Fig. 4(a) and 4(b), we report average
accuracy of sensitivity analysis of the hyper-parameters d and k
on Office-31 dataset. We find that our ACDA method is generally
robust to different hyper-parameters, indicating that exhaustive
hyper-parameter fine-tuning is not very necessary for ACDA to
achieve good performance.

Training curves of accuracy and loss. Fig. 4(a) and 4(b), and
Fig. 5(b) show the training accuracy curve and training loss curve
of the three training setting on Office-Home dataset. It shows that
our ACDA algorithm is more stable and it converges easily for dif-
ferent dataset settings. It indicates that the cross-layer semantic
alignment strategy is very general and more robust.

Semantic feature distributions. To further analyze the effec-
tiveness of our adaptation strategy, we visualize the learned
semantic feature distributions for the C!P setting on
Table 2
Classification accuracy (%) for unsupervised domain adaptation on Office-Home dataset (m

Method Ar!Cl Ar!Pr Ar!Rw Cl!Ar Cl!Pr Cl!Rw

ResNet-50 [1] 42.5 50.0 58.0 37.4 41.9 46.2
DAN [6] 43.6 57.0 67.9 45.8 56.5 60.4
DANN [31] 45.6 59.3 70.1 47.0 58.5 60.9
JAN [8] 45.9 61.2 68.9 50.4 59.7 61.0
CDAN [25] 49.0 69.3 74.5 54.4 66.0 68.4
CBST [43] 51.4 74.1 78.9 56.3 72.2 73.4
BSP + DANN [45] 51.4 68.3 75.9 56.0 67.8 68.8
GAKT [3] 34.49 43.63 55.28 36.14 52.74 53.16
SAFN* [14] 54.4 73.3 77.9 65.2 71.5 73.2
SymNets [16] 47.7 72.9 78.5 64.2 71.3 74.2
GCAN [24] 36.43 47.25 61.08 37.90 58.25 57.00
GAACN [12] 53.1 71.5 74.6 59.9 64.6 67.0
SCA [46] 46.7 64.6 71.3 53.1 65.3 65.2
DRMEA [4] 52.3	0.4 73.0	0.6 77.3	0.3 64.3	0.3 72.0	0.7 71.8	0
CDAN + TFLGM [5] 51.4 72.0 77.2 61.7 71.9 72.2
ACDA 53.1	0.9 74.8	1.2 82.6	0.5 69.8	0.8 75.8	1.1 77.4	0
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ImageCLEF-DA dataset using t-SNE [48] in Fig. 6. It is observed
that our ACDA method learns more domain-invariant semantic
feature representations by aligning the source and target data
in the semantic feature representation space via cross-layer
semantic alignment. It proves that our method ACDA consis-
tently achieves excellent performance for the UDA task on differ-
ent datasets.

Ablation studies. We also implement ablation studies to inves-
tigate the effectiveness of each part of our ACDA method. The
results are reported in Table 5. We can find that our proposed
ACDA method improves the accuracy by 14.74% compared to the
ResNet-50 method with no UDA strategy. By comparing the accu-
racy of the second and last row in Tabel 5, it shows that our pro-
posed key design improves the accuracy by 3.94%. We find that it
is necessary to explore the relationship between cross-layers of
source and target domains. Besides, the elaborate dynamic atten-
tion mechanism is effective for achieving state-of-the-art model
adaptation performance.

Structure of Projection NetworkWe adopt a three-layer resid-
ual convolution networks as the learnable projection network, we
compare different structure of the projection networks in Table 6.
ean 	 standard error over 3 runs).

Pr!Ar Pr!Cl Pr!Rw Rw!Ar Rw!Cl Rw!Pr Avg.

38.5 42.4 60.4 53.9 41.2 59.9 47.7
44.0 43.6 67.7 63.1 51.5 74.3 56.3
46.1 43.7 68.5 63.2 51.8 76.8 57.6
45.8 43.4 70.3 63.9 52.4 76.8 58.3
55.6 48.3 75.9 68.4 55.4 80.5 63.8
54.4 41.6 78.8 66.0 48.3 81.0 64.7
57.0 49.6 75.8 70.4 57.1 80.6 64.9
31.59 40.55 61.43 45.64 44.58 64.92 47.01
63.6 52.6 78.2 72.3 58.0 82.1 68.5
64.2 48.8 79.5 74.5 52.6 82.7 67.6
35.77 42.66 64.47 50.08 49.12 72.53 51.05
59.2 53.8 75.1 70.1 59.3 80.9 65.8
54.6 47.2 71.7 68.2 56.0 80.2 62.1

.5 63.6	0.6 52.7	0.7 78.5	0.2 72.0	0.1 57.7	0.6 81.6	0.2 68.1	0.2
60.0 51.7 78.8 72.8 58.9 82.0 67.6

.1 63.6	0.4 54.7	0.8 78.6	0.5 71.6	0.3 60.6	0.9 83.2	0.7 70.5



Table 3
Classification accuracy (%) for unsupervised domain adaptation on Image-CLEF dataset (mean 	 standard error over 3 runs).

Method I!P P!I I!C C!I C!P P!C Avg.

ResNet-50 [1] 74.8	0.3 83.9	0.1 91.5	0.3 78.0	0.2 65.5	0.3 91.2	0.3 80.7
DAN [6] 74.5	0.4 82.2	0.2 92.8	0.2 86.3	0.4 69.2	0.4 89.8	0.4 82.5
DANN [31] 75.0	0.6 86.0	0.3 96.2	0.4 87.0	0.5 74.3	0.5 91.5	0.6 85.0
JAN [8] 76.8	0.4 88.0	0.2 94.7	0.2 89.5	0.3 74.2	0.3 91.7	0.3 85.8
rRevGrad + CAT [15] 77.2	0.2 91.0	0.3 95.5	0.3 91.3	0.3 75.3	0.6 93.6	0.5 87.3
GCAN [24] 68.2	0.5 84.1	0.2 92.2	0.1 82.5	0.1 67.2	0.2 91.3	0.1 80.9
GAACN [12] 77.2 90.3 95.7 90.2 77.3 93.3 87.3
ACDA 77.39	0.1 89.32	1.0 95.9	0.3 89.41	0.6 78.56	0.7 96.51	0.2 87.85

Table 4
Classification accuracy (%) for unsupervised domain adaptation on VisDA dataset.

Method ResNet-50 [1] DAN [6] MCD [44] CDAN [25] DRMEA [4] GAACN [12] CTSN [13] SAFN [14] GSDA [20] RWOT [21] ACDA

Avg. 52.4 61.1 71.9 73.7 79.3 69.8 75.4 76.1 81.5 84.0 86.4

Fig. 4. (a): Sensitivity analysis of hyper-parameter d of our ACDA method on Office-31 dataset; (b): Sensitivity analysis of hyper-parameter k of our ACDA method on Office-
31 dataset.

Fig. 5. (a): The accuracy of our ACDA method for the transfer task C!A, C!P, and C!R on Office-Home dataset; (b): The training loss of our ACDA method for the transfer
task C!A, C!P, and C!R on Office-Home dataset.
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It shows that the different structure of the projection networks
have minor impact for the ACDA method to achieve the excellent
model adaptation performance, and the adopted three-layer resid-
ual convolution networks achieves better results.
7

Alignment Layers We compare different number of layers for
alignment in Table 7. It shows that we may have minor adaptation
performance gain by adopting more layers for alignment, but it
may increase the calculation cost.



Fig. 6. T-SNE visualization of the semantic feature distributions of our method for the adaptation task C!P on ImageCLEF-DA dataset before adaptation (a) and after
adaptation (b). The blue and red points represent samples in domain Caltech(C) and Pascal(P), respectively.

Table 5
Ablation experiments on Office-31 dataset for unsupervised domain adaptation.

Method Avg.

ResNet-50 [1] 76.20
ACDA w/o label-conditioned & cross-layer alignment 87.00
ACDA w/o cross-layer alignment 89.27
ACDA w/o label-conditioned alignment 88.20
ACDA w/o dynamic attention mechanism 89.85
ACDA 90.94

Table 6
Comparison of different structure of convolution-based projection of ACDA method
on Office-31 dataset.

Layers Pooling Residual block Avg.

� U � 89.78
1 � � 90.12
3 � � 90.29
3 U � 90.48
3 � U 90.94
3 U U 90.82

Table 7
Comparison of different number of layers for alignment on Office-31 dataset.

Number of layers for alignment Avg.

2 89.87
3 90.94
4 91.02
all 91.09
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5. Conclusion

In this paper, we first point out that the same level of semantic
information can be distributed across the different layers of the
model, which can cause of negative transfer gain in previous
UDA methods with same-layer alignment. We propose a novel
attention-based cross-layer domain alignment method to address
this problem by reweighting each cross-layer pair according to
the semantic similarity for precise domain alignment. Extensive
experiments show the superior performance of our method in
comparison to the other state-of-the-art UDA methods. In future,
we will extend our framework to other adaptation tasks of com-
puter vision, like semantic segmentation and object detection.
8

CRediT authorship contribution statement

Xu Ma: Writing - original draft, Software, Conceptualization,
Methodology, Validation. Junkun Yuan: Software, Writing - origi-
nal draft. Yen-wei Chen: Writing - review & editing. Ruofeng
Tong: Writing - review & editing. Lanfen Lin: Supervision, Writing
- review & editing.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

This work was supported by the Natural Science Foundation of
Zhejiang Province (LZ22F020012) and Major Scientific Research
Project of Zhejiang Lab (2020ND8AD01).

References

[1] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in:
Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 770–778.

[2] S. Ben-David, J. Blitzer, K. Crammer, A. Kulesza, F. Pereira, J.W. Vaughan, A
theory of learning from different domains, Machine learning 79 (2010) 151–
175.

[3] Z. Ding, S. Li, M. Shao, Y. Fu, Graph adaptive knowledge transfer for
unsupervised domain adaptation, in: Proceedings of the European
Conference on Computer Vision (ECCV), pp. 37–52.

[4] Y.-W. Luo, C.-X. Ren, P. Ge, K.-K. Huang, Y.-F. Yu, Unsupervised domain
adaptation via discriminative manifold embedding and alignment, in:
Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pp.
5029–5036.

[5] R. Zhu, X. Jiang, J. Lu, S. Li, Transferable feature learning on graphs across visual
domains, in: 2021 IEEE International Conference on Multimedia and Expo
(ICME), IEEE, pp. 1–6.

[6] M. Long, Y. Cao, J. Wang, M. Jordan, Learning transferable features with deep
adaptation networks, in: International conference on machine learning, PMLR,
pp. 97–105.

[7] M. Long, H. Zhu, J. Wang, M.I. Jordan, Unsupervised domain adaptation with
residual transfer networks, arXiv preprint arXiv:1602.04433 (2016).

[8] M. Long, H. Zhu, J. Wang, M.I. Jordan, Deep transfer learning with joint
adaptation networks, in: International conference on machine learning, PMLR,
pp. 2208–2217.

[9] H. Venkateswara, J. Eusebio, S. Chakraborty, S. Panchanathan, Deep hashing
network for unsupervised domain adaptation, in: Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 5018–5027.

[10] D. Chen, J.-P. Mei, Y. Zhang, C. Wang, Z. Wang, Y. Feng, C. Chen, Cross-layer
distillation with semantic calibration, in: Proceedings of the AAAI Conference
on Artificial Intelligence, volume 35, pp. 7028–7036.

[11] J. Yuan, X. Ma, D. Chen, K. Kuang, F. Wu, L. Lin, Collaborative semantic
aggregation and calibration for separated domain generalization, arXiv e-
prints (2021) arXiv–2110.

http://refhub.elsevier.com/S0925-2312(22)00465-9/h0010
http://refhub.elsevier.com/S0925-2312(22)00465-9/h0010
http://refhub.elsevier.com/S0925-2312(22)00465-9/h0010


X. Ma, J. Yuan, Yen-wei Chen et al. Neurocomputing 499 (2022) 1–10
[12] W. Chen, H. Hu, Generative attention adversarial classification network for
unsupervised domain adaptation, Pattern Recognition 107 (2020) 107440.

[13] L. Zuo, M. Jing, J. Li, L. Zhu, K. Lu, Y. Yang, Challenging tough samples in
unsupervised domain adaptation, Pattern Recognition 110 (2021) 107540.

[14] R. Xu, G. Li, J. Yang, L. Lin, Larger norm more transferable: An adaptive feature
norm approach for unsupervised domain adaptation, in: Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 1426–1435.

[15] Z. Deng, Y. Luo, J. Zhu, Cluster alignment with a teacher for unsupervised
domain adaptation, in: Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 9944–9953.

[16] Y. Zhang, H. Tang, K. Jia, M. Tan, Domain-symmetric networks for adversarial
domain adaptation, in: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 5031–5040.

[17] J. Yuan, X. Ma, K. Kuang, R. Xiong, M. Gong, L. Lin, Learning domain-invariant
relationship with instrumental variable for domain generalization, arXiv
preprint arXiv:2110.01438 (2021).

[18] Y. Pan, T. Yao, Y. Li, Y. Wang, C.-W. Ngo, T. Mei, Transferrable prototypical
networks for unsupervised domain adaptation, in: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 2239–2247.

[19] G. Kang, L. Jiang, Y. Yang, A.G. Hauptmann, Contrastive adaptation network for
unsupervised domain adaptation, in: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 4893–4902.

[20] L. Hu, M. Kan, S. Shan, X. Chen, Unsupervised domain adaptation with
hierarchical gradient synchronization, in: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 4043–4052.

[21] R. Xu, P. Liu, L. Wang, C. Chen, J. Wang, Reliable weighted optimal transport for
unsupervised domain adaptation, in: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 4394–4403.

[22] J. Yuan, X. Ma, D. Chen, K. Kuang, F. Wu, L. Lin, Domain-specific bias filtering
for single labeled domain generalization, arXiv preprint arXiv:2110.00726
(2021).

[23] H. Tang, K. Chen, K. Jia, Unsupervised domain adaptation via structurally
regularized deep clustering, in: Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 8725–8735.

[24] X. Ma, T. Zhang, C. Xu, Gcan: Graph convolutional adversarial network for
unsupervised domain adaptation, in: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 8266–8276.

[25] M. Long, Z. Cao, J. Wang, M.I. Jordan, Conditional adversarial domain
adaptation, arXiv preprint arXiv:1705.10667 (2017).

[26] J. Li, E. Chen, Z. Ding, L. Zhu, K. Lu, Z. Huang, Cycle-consistent conditional
adversarial transfer networks, in: Proceedings of the 27th ACM International
Conference on Multimedia, pp. 747–755.

[27] W. Zhang, W. Ouyang, W. Li, D. Xu, Collaborative and adversarial network for
unsupervised domain adaptation, in: Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 3801–3809.

[28] M. Chen, S. Zhao, H. Liu, D. Cai, Adversarial-learned loss for domain adaptation,
in: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 3521–
3528.

[29] S. Cui, S. Wang, J. Zhuo, C. Su, Q. Huang, Q. Tian, Gradually vanishing bridge for
adversarial domain adaptation, in: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 12455–12464.

[30] E. Tzeng, J. Hoffman, K. Saenko, T. Darrell, Adversarial discriminative domain
adaptation, in: Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 7167–7176.

[31] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette, M.
Marchand, V. Lempitsky, Domain-adversarial training of neural networks, The
journal of machine learning research 17 (2016) 2096–2030.

[32] R. Shao, X. Lan, P.C. Yuen, Feature constrained by pixel: Hierarchical
adversarial deep domain adaptation, in: Proceedings of the 26th ACM
international conference on Multimedia, pp. 220–228.

[33] B. Yang, P.C. Yuen, Cross-domain visual representations via unsupervised
graph alignment, in: Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pp. 5613–5620.

[34] L. Mescheder, A. Geiger, S. Nowozin, Which training methods for gans do
actually converge?, in: International conference on machine learning, PMLR,
pp. 3481–3490.

[35] D. Bahdanau, K. Cho, Y. Bengio, Neural machine translation by jointly learning
to align and translate, arXiv preprint arXiv:1409.0473 (2014).

[36] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, Ł. Kaiser, I.
Polosukhin, Attention is all you need, in: Advances in neural information
processing systems, pp. 5998–6008.

[37] J. Fu, J. Liu, H. Tian, Y. Li, Y. Bao, Z. Fang, H. Lu, Dual attention network for scene
segmentation, in: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 3146–3154.

[38] X. Wang, L. Li, W. Ye, M. Long, J. Wang, Transferable attention for domain
adaptation, in: Proceedings of the AAAI Conference on Artificial Intelligence,
pp. 5345–5352.

[39] C. Li, D. Du, L. Zhang, L. Wen, T. Luo, Y. Wu, P. Zhu, Spatial attention pyramid
network for unsupervised domain adaptation, in: European Conference on
Computer Vision, Springer, pp. 481–497.
9

[40] W. Chen, H. Hu, Generative attention adversarial classification network for
unsupervised domain adaptation, Pattern Recognition 107 (2020) 107440.

[41] Y. Zuo, H. Yao, C. Xu, Attention-based multi-source domain adaptation, IEEE
Transactions on Image Processing 30 (2021) 3793–3803.

[42] J. Liang, D. Hu, J. Feng, Do we really need to access the source data? source
hypothesis transfer for unsupervised domain adaptation, in: International
Conference on Machine Learning, PMLR, pp. 6028–6039.

[43] Y. Zou, Z. Yu, B. Kumar, J. Wang, Unsupervised domain adaptation for semantic
segmentation via class-balanced self-training, in: Proceedings of the European
conference on computer vision (ECCV), pp. 289–305.

[44] K. Saito, K. Watanabe, Y. Ushiku, T. Harada, Maximum classifier discrepancy for
unsupervised domain adaptation, in: Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 3723–3732.

[45] X. Chen, S. Wang, M. Long, J. Wang, Transferability vs. discriminability: Batch
spectral penalization for adversarial domain adaptation, in: International
conference on machine learning, PMLR, pp. 1081–1090.

[46] W. Deng, L. Zheng, Y. Sun, J. Jiao, Rethinking triplet loss for domain adaptation,
IEEE Transactions on Circuits and Systems for Video Technology 31 (2020) 29–
37.

[47] K. Saito, Y. Ushiku, T. Harada, Asymmetric tri-training for unsupervised
domain adaptation, in: International Conference on Machine Learning, PMLR,
pp. 2988–2997.

[48] L. Van der Maaten, G. Hinton, Visualizing data using t-sne, Journal of machine
learning research 9 (2008).

Xu Ma received his B.S. degree from the College of
Computer Science and Technology at Harbin Institute of
Technology in 2020. He is currently pursuing Master
degree at the College of Computer Science and Tech-
nology at Zhejiang University since 2020. His research
interests include domain adaptation and domain gen-
eralization.
Junkun Yuan received his B.S. degree from the College
of Information Engineering at Zhejiang University of
Technology in 2019. He is currently pursuing the Ph.D.
degree with the College of Computer Science and
Technology at Zhejiang University since 2019.
Yen-Wei Chen (Member, IEEE) received the B.E. degree
from Kobe University, Kobe, Japan, in 1985, and the M.E.
and D.E. degrees from Osaka University, Osaka, Japan, in
1987 and 1990, respectively. From 1991 to 1994, he was
a Research Fellow with the Institute for Laser Technol-
ogy, Osaka. From October 1994 to March 2004, he was
an Associate Professor and a Professor with the
Department of Electrical and Electronic Engineering,
University of the Ryukyus, Okinawa, Japan. He is cur-
rently a Professor with the College of Information Sci-
ence and Engineering, Ritsumeikan University, Kyoto,
Japan. He is also a Visiting Professor with the College of

Computer Science and Technology, Zhejiang University, China, and the Research
Center for Healthcare Data Science, Zhejiang Laboratory, China. His research
interests include pattern recognition, image processing, and machine learning. He

has published more than 200 research articles in these fields. He is an Associate
Editor of the International Journal of Image and Graphics (IJIG) and an Associate
Editor of the International Journal of Knowledge-Based and Intelligent Engineering
Systems.

http://refhub.elsevier.com/S0925-2312(22)00465-9/h0060
http://refhub.elsevier.com/S0925-2312(22)00465-9/h0060
http://refhub.elsevier.com/S0925-2312(22)00465-9/h0065
http://refhub.elsevier.com/S0925-2312(22)00465-9/h0065
http://refhub.elsevier.com/S0925-2312(22)00465-9/h0200
http://refhub.elsevier.com/S0925-2312(22)00465-9/h0200
http://refhub.elsevier.com/S0925-2312(22)00465-9/h0205
http://refhub.elsevier.com/S0925-2312(22)00465-9/h0205
http://refhub.elsevier.com/S0925-2312(22)00465-9/h0230
http://refhub.elsevier.com/S0925-2312(22)00465-9/h0230
http://refhub.elsevier.com/S0925-2312(22)00465-9/h0230
http://refhub.elsevier.com/S0925-2312(22)00465-9/h0240
http://refhub.elsevier.com/S0925-2312(22)00465-9/h0240


X. Ma, J. Yuan, Yen-wei Chen et al. Neurocomputing 499 (2022) 1–10
Ruofeng Tong received his B.S. degree in mathematics
from Fudan University and his Ph.D. degree in applied
mathematics in 1996 from Zhejiang University. Cur-
rently, he is a professor in the College of Computer
Science and Engineering, Zhejiang University, China. His
research interests include CAD&CG, medical image
reconstruction, and virtual reality.
10
Lanfen Lin (Member, IEEE) received Ph.D. degrees in
Aircraft Manufacture Engineering from Northwestern
Polytechnical University in 1995. She held a postdoc-
toral position with the College of Computer Science and
Technology, Zhejiang University, China, from January
1996 to December 1997. Now she is a Full Professor and
the Vice Director of the Artificial Intelligence Institute in
Zhejiang University. Her research interests include
medical image processing, big data analysis, data min-
ing, and so on.


	Attention-based cross-layer domain alignment for unsupervised domain adaptation
	1 Introduction
	2 Related Work
	2.1 Unsupervised Domain Adaptation
	2.2 Attention mechanism

	3 Method
	3.1 Problem Definition
	3.2 Cross-Layer Semantic Alignment
	3.3 Model Pretraining
	3.4 Cross-Layer Alignment
	3.5 Optimization

	4 Experiments
	4.1 Dataset
	4.2 Baseline Methods
	4.3 Implementation Details
	4.4 Main Results
	4.5 Discussions

	5 Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgments
	References


