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Abstract
Conventional DomainGeneralization (CDG) utilizesmultiple labeled source datasets to train a generalizablemodel for unseen
target domains. However, due to expensive annotation costs, the requirements of labeling all the source data are hard to be
met in real-world applications. In this paper, we investigate a Single Labeled Domain Generalization (SLDG) task with
only one source domain being labeled, which is more practical and challenging than the CDG task. A major obstacle in
the SLDG task is the discriminability-generalization bias: the discriminative information in the labeled source dataset may
contain domain-specific bias, constraining the generalization of the trained model. To tackle this challenging task, we propose
a novel framework called Domain-Specific Bias Filtering (DSBF), which initializes a discriminative model with the labeled
source data and then filters out its domain-specific bias with the unlabeled source data for generalization improvement. We
divide the filtering process into (1) feature extractor debiasing via k-means clustering-based semantic feature re-extraction and
(2) classifier rectification through attention-guided semantic feature projection. DSBF unifies the exploration of the labeled
and the unlabeled source data to enhance the discriminability and generalization of the trained model, resulting in a highly
generalizable model. We further provide theoretical analysis to verify the proposed domain-specific bias filtering process.
Extensive experiments on multiple datasets show the superior performance of DSBF in tackling both the challenging SLDG
task and the CDG task.

Keywords Domain generalization · Visual recognition · Single labeled multi-source data · Bias filtering · Semantic feature
projection
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1 Introduction

Deep learning based supervised learning (SL) and semi-
supervised learning (SSL) havemade great progress in recent
years (LeCun et al., 2015; Yang et al., 2021). However, their
success heavily relies on the independent and identically dis-
tributed (i.i.d.) assumption (Vapnik, 1992), while the training
(source) and test (target) datasets are usually sampled from
different distributions in real-world applications, which is
known as dataset shift (Quionero-Candela et al., 2009). To
address this problem, domain adaptation (DA) (Ben-David
et al., 2010) and domain generalization (DG) (Blanchard et
al., 2011) are formulated and many effective methods (Wang
et al., 2021; Lin et al., 2020; Xu et al., 2021; Wang et al.,
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2020c; Ding & Fu, 2017) are proposed to improve the out-
of-domain generalization ability of the model.

Typical research fields of DA, such as unsupervised
domain adaptation (UDA) (Xu et al., 2021; Zhang et al.,
2020b; Li et al., 2020b, c; Long et al., 2018; Zhang et al.,
2019b), multi-source domain adaptation (MSDA) (Zuo et
al., 2021; Peng et al., 2019; Zhang et al., 2015; Zhao et al.,
2018; Wang et al., 2020c), and multi-target domain adap-
tation (MTDA) (Chen et al., 2019; Liu et al., 2020; Wang
et al., 2020c; Gong et al., 2013; Yu et al., 2018; Gholami et
al., 2020) suppose that both the source and the target datasets
are available for model training. For each new target domain,
they have to re-collect target data and use it to repeat the train-
ing process, which is expensive, time-consuming, or even
infeasible. For example, an autonomous driving car can not
know in advance which environment (i.e., domain), it will
enter. DG is thus proposed to learn a generalizable model by
incorporating the invariance across multiple labeled source
domains without accessing any target data. However, label-
ing all the source data is laborious, and most of the previous
DG methods (Ding & Fu, 2017; Balaji et al., 2018; Dou et
al., 2019; Wang et al., 2020a; Zhao et al., 2020; Matsuura
and Harada, 2020) do not make full use of the information
contained in massive unlabeled data. Then, a more practical
problem arises: Is it possible to perform domain generaliza-
tion with only one labeled source dataset as well as multiple
unlabeled source datasets? For example, we may train a
skin lesion classification model (Li et al., 2020a) by using
a labeled skin lesion dataset from a central hospital. Mean-
while, we would like to further improve the generalization
ability of the model by employing abundant data from other

local hospitals, but the additional data may be unlabeled due
to expensive annotation costs.

In this paper, in addition to theConventionalDomainGen-
eralization (CDG) taskwithmultiple labeled source domains,
we further investigate a more practical task, namely Single
Labeled Domain Generalization (SLDG), where only one of
themultiple source domains is labeled (see Fig. 1). The single
labeledmulti-source data puts a serious obstacle in the path of
generalization learning, which we call the discriminability-
generalization bias: the discriminative information in the
labeled source domain may contain domain-specific bias,
constraining the out-of-domain generalization ability of the
trained model. Thus, how to train a discriminative model
while removing its domain-specific bias for guaranteeing
generalization is the key to solve this challenging task.

To address this problem, we propose a novel frame-
work called Domain-Specific Bias Filtering (DSBF) for the
SLDG task. Specifically, it initializes a discriminative model
with the labeled source data and then filters out domain-
specific bias in the initialized model with the unlabeled
source data for generalization improvement, corresponding
to a model initialization stage and a bias filtering stage,
respectively. The bias filtering stage consists of (1) feature
extractor debiasing via k-means clustering-based semantic
feature re-extraction and (2) classifier rectification through
attention-guided semantic feature projection. Our method
DSBFunifies the exploration of labeled and unlabeled source
data to enhance the discriminability and generalization of the
trained model, resulting in a highly generalizable model, as
verified by theoretical analyses. Extensive experiments on
multiple datasets consistently show the superior performance
of the proposed DSBF framework for the SLDG task. More-
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(a) Conventional Domain Generalization (CDG) (b) Single Labeled Domain Generalization (SLDG)
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Fig. 1 Comparison between the CDG (a) and the introduced SLDG
tasks (b) for visual recognition. The latter is more practical for dealing
with the problem of high annotation costs in real-world applications, yet

challenging, because only one of the multiple source datasets is labeled,
which may lead to a serious problem of discriminability-generalization
bias.
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over, we also verify the effectiveness of it for the CDG task
with multiple labeled source domains.

Ourmain contributions are summarized as: (1)We investi-
gate a practical and challenging generalization task, namely
Single Labeled Domain Generalization (SLDG) with only
one source domain being labeled, towards the real scenarios
where massive unlabeled data is available for generalizable
model training. (2) We propose a novel framework called
Domain-Specific Bias Filtering (DSBF) to tackle the SLDG
task by unifying the exploration of the labeled and the unla-
beled source data, which consists of model initialization and
bias filtering that enhances the discriminability and general-
ization ability of the model, respectively. (3) We verify the
proposed method DSBF with theoretical analyses. Extensive
experiments on multiple datasets consistently show its supe-
rior performance in tackling the SLDG task. Our method
can be easily extended to the CDG task and also achieves
state-of-the-art performance.

2 RelatedWork

2.1 Supervised and Semi-Supervised Learning

In recent years, deep learning based supervised learning
(SL) has been widely employed in a variety of applications
(LeCun et al., 2015). It considers the principle of empirical
risk minimization (ERM) (Vapnik, 1992) that a model with
low empirical risk on a labeled training dataset is supposed
to generalize well on a test dataset. Due to the expensive
annotation costs, lots of recent works (Tarvainen & Valpola,
2017; Sohn et al., 2020; Yasarla et al., 2021; Wang et al.,
2020b) focus on semi-supervised learning (SSL) (Yang et
al., 2021) that utilizes both the labeled and the unlabeled
data for model training. For example, Tarvainen and Valpola
(2017) train a student model with a classification cost on
the labeled data, and use a consistency cost to make the
outputs of the student and a teacher be consistent on the
unlabeled data for effectively capturing discriminative infor-
mation. Although the general SSL methods make full use of
both the labeled and the unlabeled data for training discrim-
inative models, they assume that all the datasets are sampled
from the same distributions, which may make the trained
models suffer from significant performance degradation on
the test (target) datasets in real scenarios. In comparison, the
SLDG task that we investigate aims to train a generalizable
model using both the labeled and the unlabeled source data,
for better generalization on unknown target domains with
different statistical distributions.

2.2 Domain Adaptation

Unsupervised domain adaptation (UDA) (Ben-David et al.,
2010; Bellitto et al., 2021; Chen et al., 2021; Dai et al., 2020;

Gong et al., 2014; Ho & Gopalan, 2014); (Hoffman et al.,
2014; Huang et al., 2021) (Kan et al., 2014; Li et al., 2021;
Shen et al., 2021; Sindagi&Srivastava, 2017;Xu et al., 2016;
Yamada et al., 2014; Zhao et al., 2021; Zheng &Yang, 2021)
is a prevailing direction to DA that addresses the dataset shift
between a labeled source domain and an unlabeled target
domain. Considerable progress has been made in UDA. A
large proportion of them reduces divergence between the
source and target domains via adversarial learning (Zhang
et al., 2020b; Li et al., 2020b; Ganin et al., 2016; Long et
al., 2017, 2018; Saito et al., 2018; Zhang et al., 2019b) or
directly minimizing domain discrepancy with a metric like
MaximumMeanDiscrepancy (MMD) (Li et al., 2020c; Long
et al., 2015, 2017). These methods may fail to leverage the
availablemultiple source datasets, leading to insufficient gen-
eralization learning.

Increasing works (Zuo et al., 2021; Peng et al., 2019;
Zhang et al., 2015; Zhao et al., 2018; Wang et al., 2020c)
thus focus on the multi-source domain adaptation (MSDA)
(Ben-David et al., 2010) task, where multiple labeled source
datasets from different domains are provided formodel adap-
tation. For example, some works (Zuo et al., 2021; Wang
et al., 2020c) present an attention-based strategy to reduce
domain divergence in the semantic feature space by using the
multiple source datasets and an elaborate attention module.
Multi-target domain adaptation (MTDA) is another research
field of DA, which extends UDA to multiple (Gong et al.,
2013; Gholami et al., 2020; Yu et al., 2018; Wang et al.,
2020c; Chen et al., 2019; Yu et al., 2018), continuous (Gong
et al., 2019;Mancini et al., 2019a;Wu et al., 2019), and latent
(Hoffman et al., 2012; Xiong et al., 2014; Mancini et al.,
2019b; Liu et al., 2020) target domains. Among them, Chen
et al. (2019) introduce blending-target domain adaptation
(BTDA) that aims to adapt the model to a mixed target distri-
bution where the multi-target proportions are unobservable.
Liu et al. (2020) assume the target domain is a compound of
multiple homogeneous domains without domain labels and
employ model predictions as the pseudo labels of the unla-
beled data to enable a curriculum learning process. Although
annotation costs of the target dataset are avoided in the above
DA researches, the requirements of re-collecting target data
and training model for each new target domain still hinder
their applications in real scenarios. In contrast, we aim to
train a generalizable model that can directly generalize to
unseen target domains in the investigated SLDG task. Note
that despite both the MTDA task and our SLDG task assume
one labeled dataset and multiple unlabeled datasets, MTDA
mainly aims to improve the performance of the model on the
seen unlabeled target domains (which can be used for both
training and inference), but SLDG aims to improve the per-
formance of the model on unseen target domains (which can
only be used for inference).
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2.3 Domain Generalization

Recently, domain generalization (DG) (Blanchard et al.,
2011) attracts great interest, which learns to extract domain
invariance from multiple labeled source datasets and trains
a generalizable model to unseen target domains. Since the
DG task is similar to meta-learning (Schmidhuber, 1987),
some works (Balaji et al., 2018; Dou et al., 2019; Li et al.,
2019) employ a meta-learning-based strategy that trains the
model on a meta-train dataset and continues to improve the
model generalization on ameta-test dataset, both the datasets
are constructed from the available labeled multi-source data.
Meanwhile, a lot of effort has gone into data augmentation
techniques (Carlucci et al., 2019; Wang et al., 2020a). The
latent idea of these works is the augmented data generates
various new domains, and the models trained on these gen-
erated domains could be more generalizable. Similar to DA,
some recent DG works (Zhao et al., 2020; Matsuura and
Harada, 2020; Zhou et al., 2020) use adversarial learning
to learn discriminative and domain-invariant semantic fea-
ture representations that can be applied to different domains.
Other strategies like normalization (Seo et al., 2020; Zhou et
al., 2021c) and else (Huang et al., 2020; Qiao et al., 2020;
Yuan et al., 2021b; Ding & Fu, 2017; Yuan et al., 2021a)
are also considered in the DG research fields. These methods
may require fully labeled multi-source data, which is hard to
be satisfied due to the high annotation costs.

Qiao et al. (2020) present to perform domain general-
ization with only one labeled source domain, and design a
meta-learning scheme with an auto-encoder for model train-
ing. Besides, some data augmentation (Volpi et al., 2018;
Carlucci et al., 2019; Wang et al., 2020a) and gradient-based
(Huang et al., 2020) methods may also be extended to the
one-labeled-source setting. However, they fail to leverage
the unlabeled data, which might be abundant in real scenar-
ios, to further boost the out-of-distribution generalization of
the model.

Therefore, in addition to the Conventional Domain Gen-
eralization (CDG) setting, we further investigate a more
practical task called Single Labeled Domain Generaliza-
tion (SLDG). The challenging SLDG task only assumes
one source dataset to be labeled, and other unlabeled
source datasets are further exploited to improve the out-of-
distribution generalization of the model.

A related task is the Semi-Supervised Domain General-
ization (SSDG) (Zhou et al., 2021a). Both the SSDG and
our SLDG tasks aim to train a generalizable model using
partially-labeled source data. However, they are different in
the following aspects. (1) Problemdefinition: SSDGassumes
that partial samples are labeled in each source domain;
but our SLDG task considers that only one source domain
is labeled while other domains are totally unlabeled. (2)
Solution direction: based on the different definitions, Zhou

et al. (2021a) perform semi-supervised training under the
consideration of domain shift by extending FixMatch via
uncertainty and style consistency learning; but we learn a dis-
criminative model from the labeled dataset and then filter out
bias and boost generalization using the unlabeled datasets,
corresponding to the model initialization and bias filtering
stages, respectively. (3) Application scenario: SSDG focuses
on the scenario that multiple partially-labeled datasets are
given for generalization learning; but our SLDG task is intro-
duced towards the scenario that a labeled dataset is given for
learning a predictive yet biased model, meanwhile, multiple
semantically-relevant but unlabeled datasets are available for
further boosting its out-of-distribution generalization perfor-
mance.

2.4 AttentionMechanism

Attention (Bahdanau et al., 2015) is first introduced in natural
language processing for deciding which parts of a sentence
should be paid more attention to. It is widely applied in var-
ious fields (Wang et al., 2017; Zhang et al., 2019a; Fu et
al., 2019; Devlin et al., 2018). Self-attention/intra-attention
(Vaswani et al., 2017) is a specific form of the attention
mechanism, which learns a representation of a sequence by
reweighting its different positions according to their impor-
tance. A general process of the self-attention consists of
three steps: (1) Getting the embeddings of query, key, and
value from the original sequence. (2) Obtaining normalized
weights by calculating the similarity between the query and
the key. (3) Weighting the value. For example, Fu et al.
(2019) capture rich contextual dependencies in both spa-
tial and channel dimensions by using a position attention
module and a channel attentionmodule, selectively aggregat-
ing spatial and channel features for obtaining more effective
representations. In the inter-domain attention module of our
methodDSBF,we let the key-value pairs be constructed from
the semantic features of one source domain and the query
be constructed from the semantic features of other source
domains. In this way, the similar semantic information is
automatically enhanced for generalization improvement.

3 Problem Setup

In Conventional Domain Generalization (CDG) task, we
may assume that there are K labeled multi-source datasets
{D j }Kj=1 with n j samples in the j-th dataset, i.e., D j =
{(x j

i , y
j
i )}n j

i=1. Any information of the target domainDK+1 is
not provided during the model training process. The source
datasetsD1, ...,DK and the target datasetDK+1 are sampled
from different distributions P(X1,Y 1), ..., P(XK , Y K ),

P(XK+1,Y K+1), respectively, which are defined on input
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and label joint space X × Y . The goal of the CDG task is
to use the fully labeled source datasets {D j }Kj=1 to train a
predictive model that can perform well on the unseen target
dataset DK+1.

In this paper, we further introduce a more challenging
task, i.e., Single Labeled Domain Generalization (SLDG).
SLDG also aims to improve the generalization performance
on the unseen target domain, but only the first source dataset
D1 = {(x1i , y1i )}n

1

i=1 is assumed to be labeled, the others

{D j = {x j
i }n

j

i=1}Kj=2 are supposed to be unlabeled.
Themain challenge in theSLDGtask is the discriminability-

generalization bias. That is, when we use the labeled source
data to train a discriminativemodel for object recognition, the
domain-specific bias in the labeled source data would mis-
lead the model, constraining its generalization performance
on other domains. Therefore, it is vital to train a discrimina-
tive model using the labeled source data while removing its
domain-specific bias for generalization improvement.

4 Methodology

We address the SLDG task by proposing Domain-Specific
Bias Filtering (DSBF). It initializes a discriminative model
using the labeled source data and filters out domain-specific
bias in the initialized model using the unlabeled source
data for generalization improvement, which corresponds
to a model initialization stage and a bias filtering stage.
The bias filtering consists of (1) feature extractor debias-
ing using the unlabeled data and its pseudo labels obtained
via k-means clustering and (2) classifier rectification through
attention-guided semantic feature projection.Our framework
and algorithm are shown in Fig. 2 and Algorithm 1, respec-

Algorithm 1 Domain-Specific Bias Filtering
Require: A labeled source dataset D1, unlabeled source datasets

{D j }Kj=2, a backbone g and a network b with parameter θg and
θb of the feature extractor, a classifier c with parameter θc, seman-
tic feature projection networks {v j }Kj=2 with parameters {θv j }Kj=2,
initialization/filtering iterations M /N .

Ensure: Well-trained ĝ, b̂, and ĉ for inference.
1: Initialize SGD optimizers and parameters;
2: for i ter = 1 to M do // model initialization
3: Sample a batch data from D1;
4: Update θg , θb, θc by minimizing Eq. (1);
5: end for
6: for i ter = 1 to N do // bias filtering
7: Sample a batch data from D j , j = 1, ..., K ;
8: Get pseudo labels via Eq. (2–4);
9: Update θg , θb by minimizing Eq. (5–6);
10: Update {θv j }Kj=2 by minimizing Eq. (7);
11: Update θc by minimizing Eq. (8).
12: end for

tively. We then introduce the details of the two stages of the
DSBF method in the following.

4.1 Model Initialization

To initialize a discriminativemodel,weuse the labeled source
data D1 to pretrain the feature extractor b ◦ g and the classi-
fier c for learning to extract semantic features of the data and
classifying the extracted features to the corresponding cat-
egories, respectively. The used cross-entropy classification
loss of the labeled source data for initializing the model, i.e.,
b ◦ g and c, is

LCL = −
C∑

r=1

y1r log f br (x1), (1)

Fig. 2 Our proposed Domain-Specific Bias Filtering (DSBF) frame-
work. The whole model consists of a feature extractor b ◦ g, a classifier
c, projection networks {v j }Kj=2, and an attention module w. We employ

{v j }Kj=2 and w only for classifier rectification in training. After train-

ing, we only use the trained ĉ◦ b̂ ◦ ĝ for inference on out-of-distribution
target domains.
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where f b := c ◦ b ◦ g outputs softmax classification of the
data, and f br is the r th dimension output of f b. y jr is the r -th
dimension of one-hot encoding of the labels y j ∈ {1, ...,C}
of domain j , where the correct class is “1”, otherwise is “0”.

After model initialization, the feature extractor b ◦ g and
the classifier c are pretrained to extract semantic features of
the data and use them for classification, respectively. How-
ever, they may be misled by the domain-specific bias of the
labeled source data. Thus, we utilize the unlabeled data to
filter out the domain-specific bias in the initialized model for
generalization improvement.

4.2 Bias Filtering

The bias filtering consists of feature extractor debiasing
and classifier rectification. In feature extractor debiasing,
we aim to train the feature extractor using the unlabeled
source data for reducing the bias of the feature extractor
towards the labeled source data, and hence obtaining a more
robust model. Since the unlabeled source data does not have
ground-truth labels, we exploit k-means clustering to obtain
the pseudo labels and use them to train the feature extractor
for effective semantic feature re-extraction. In classifier rec-
tification, we project the semantic features of the unlabeled
source data to the semantic features of the labeled source data,
and then use the projection features to predict the labels of
the labeled source data. Since the projection features only
contain the bias of the unlabeled source data (because it is
obtained by feeding the features of the unlabeled source data
to the projection networks) while the labels only contain the
bias of the labeled source data, optimizing the classifier with
supervised loss can debias it, which is verified by the theo-
retical analyses in Sect. 4.3. We introduce an inter-domain
attention module to further capture the similarities among
domains and boost generalization performance.

4.2.1 Feature Extractor Debiasing

We obtain pseudo labels of the unlabeled data to facilitate the
following feature extractor debiasing and classifier rectifica-
tion processes. Inspired by recent works (Kang et al., 2019;
Liang et al., 2020) on deep clustering (Caron et al., 2018), we
adopt k-means clustering to assign pseudo labels { ŷ j }Kj=2 for

the unlabeled source datasets {x j }Kj=2. Specifically, we first

get a centroid a(0)
( j,r) of each class r for the semantic features

of each unlabeled domain j by softly assigning each sample
x j to it with model prediction-based score f br (x j ), that is

a(0)
( j,r) =

∑
x j f br (x j )b ◦ g(x j )∑

x j f br (x j )
. (2)

The centroid a(0)
( j,r) represents the semantic feature distri-

bution of each class r in domain j , which is used to assign
the initial pseudo label d j for the samples x j , that is

d j = argmin
r

dist(b ◦ g(x j ), a(0)
( j,r)), (3)

where dist(·, ·) measures the cosine distance. Similarly, we
then get updated centroid a(1)

( j,r) and final pseudo labels ŷ j

by

a(1)
( j,r) =

∑
x j 1(d j = r)b ◦ g(x j )∑

x j 1(d j = r)
,

ŷ j = argmin
r

dist(b ◦ g(x j ), a(1)
( j,r)).

(4)

The pseudo labels ŷ j can be transformed into one-hot
encoding ŷ j . We consider the ideal form of the softmax out-
puts of c should be like one-hot encoding for each sample,
and be distinct for samples from different classes. There-
fore, we improve the clustering performance by optimizing
g, b with information maximization constraint (Kundu et al.,
2020; Liang et al., 2020) loss:

LI M = 1

K − 1

K∑

j=2

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

C∑

r=1

tr log tr

︸ ︷︷ ︸
diverse class

−E[
C∑

r=1

ur log ur ]
}

︸ ︷︷ ︸
concentrated sample

,

(5)

where tr = E[ f br (x j )] and ur = f br (x j ). The first term on
the r.h.s. of Eq. (5), i.e., negative expected entropy of popu-
lation, makes the outputs of c diverse at the class level. The
second term on the r.h.s. of Eq. (5), i.e., expected entropy
of individual, makes the outputs of c be concentrated at the
sample level. Through minimizing LI M , we encourage the
unlabeled sampleswith closer distance group together,mean-
while, the samples far away are further separated. It improves
the clusteringperformance and allowsus to obtainmore accu-
rate pseudo labels for bias filtering.

After clustering, we obtain the pseudo labels of the unla-
beled source data. To debias the feature extractor b ◦ g, we
present to retrain it with the average classification loss of all
the unlabeled source datasets, thus re-extract the semantic
feature of the source data, that is,

LCU = − 1

K − 1

K∑

j=2

C∑

r=1

ŷ jr log f br (x j ). (6)

By minimizing the classification loss of both the labeled
and unlabeled data, i.e., LCL and LCU , the feature extrac-
tor b ◦ g is trained to reduce its bias towards the labeled
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source domain. Despite that the feature extractor may still
be affected by the domain-specific factors of all the source
domains, we argue that the process of feature extractor
debiasing could allow us to obtain more effective domain-
agnostic semantic features from data, facilitating the clas-
sifier rectification process with semantic feature projection.
Different from Liang et al. (2020), we do not choose to opti-
mize the classifier using the pseudo labels since it could yield
adverse effects in our experiments.

4.2.2 Classifier Rectification

As the feature extractor is debiased, we employ the gener-
ated semantic features of the unlabeled source to filter out the
domain-specific bias in the classifier. Specifically, we first
project the semantic features of the unlabeled sources, i.e.,
g(x j ), j = 2, ..., K , to the semantic features of the labeled
source, i.e., b ◦ g(x1), with the semantic feature projection
networks {v j }Kj=2. To improve the class-level domain invari-
ance, we perform conditional projection, i.e., projecting the
semantic features of the unlabeled sources to the semantic
features of the labeled source which are in the same class by
aligning the true labels y1 and the pseudo labels { ŷ j }Kj=2.
Thus, we minimize a feature projection loss to optimize the
projection networks {v j }Kj=2:

LFP = 1

K − 1

K∑

j=2

s j
(
b ◦ g

(
x1

)
− v j ◦ g(x j

)2
, (7)

where s j = 1( y1 = ŷ j ), i.e., if y1 = ŷ j , then s j = 1, else
s j = 0. Through semantic feature projection, the semantic
invariance in data is contained in the projection semantic
features v j ◦ g(x j ). Then we use it to rectify/optimize the
classifier c by minimizing the bias filtering loss, which is the
average classification loss of the projections v j ◦ g(x j ):

LBF = − 1

K − 1

K∑

j=2

C∑

r=1

s j y1r log f
v j
r (x j ), (8)

where f v j := c ◦ w ◦ v j ◦ g outputs the softmax classifica-
tion of the projections, and f

v j
r is the r -th dimension output

of f v j . An inter-domain attention module w is designed
to enhance the similarities of semantic information among
domains, which will be introduced in the following. By
minimizing Eq. (8), the classifier c uses invariant seman-
tic information contained in the projections to filter out
the domain-specific bias and capture invariant correlation
between the features and the labels. In Sect. 4.3, we provide
theoretical insights to make it clearer and more specific.

In order to further facilitate the bias filtering process, we
put forward an inter-domain attention module to enhance

Fig. 3 The proposed inter-domain attention module. It first gener-
ates semantic feature embeddings {o j }Kj=2 with embedding networks

{a j }Kj=2, then weights them according to the inter-domain similarities

and obtainweighted semantic features {q j }Kj=2 for classifier calibrating.
Domain invariance is enhanced automatically in this process.

the domain similarities as shown in Fig. 3. Let B be the
batchsize and D be the semantic feature dimension, we feed
the outputs of the projection networks {v j }Kj=2 with size B×
D to embedding networks {a j }Kj=2 and get semantic feature

embeddings {o j }Kj=2 with size B×D. Our goal is to obtain the

re-weighted {o j }Kj=2, i.e., {q j }Kj=2, based on the aggregated

inter-domain similarities among {o j }Kj=2, i.e., {z j }Kj=2, for
more effective bias filtering and generalization boost.

We begin by taking a domainm as an example, wherem ∈
{2, ..., K }. Note that we denote m as a chosen domain, and
denote j as the other domains used to calculate inter-domain
similarities and attention. We first get the normalized inter-
domain similarity matrices { p(m, j)}Kj=2 of om bymultiplying

the transpose of om with {o j }Kj=2:

p(m, j) = exp
(
(om)� o j

)
∑K

j=2 exp
(
(om)� o j

) , j = 2, ..., K , (9)

where p(m, j) is the inter-domain similarity matrix of domain
m and j with size D × D . Each position of p(m, j) repre-
sents the similarities between the corresponding position of
om and o j . Since {o j }Kj=2 is learned from the projection of

each unlabeled source to the labeled source, and { p(m, j)}Kj=2
extract the common semantic information between om and
{o j }Kj=2, averaging { p(m, j)}Kj=2 encourages the aggregation
of the common semantic information, that is,

zm = 1

K − 1

K∑

j=2

p(m, j). (10)

Each position of zm represents the overall response of the
projection of other domains to the projection of domain m,
which also indicates the common semantic information of
each position of them. Then we get the re-weighted seman-
tic features qm by multiplying om with zm , and perform an
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element-wise sum operation with om , that is,

qm = α · om zm + om, (11)

where α is a parameter initialized as 0 and trained to pro-
vide suitable weight. It is updated with the model parameters
together (we add a small perturbation from a uniform distri-
bution U (0, 1) to it to make it trained stably). In this way,
through the calculation of all the embedding semantic fea-
tures {o j }Kj=2, we can obtain all the re-weighted semantic

features {q j }Kj=2, which is re-weighted by semantic similar-
ities among the source domains. This inter-domain attention
module encourages the learning of the common semantic
information of the semantic feature projection. It effectively
assists the bias filtering and improve the generalization per-
formance as verified in the experiments.

Remark Note that Fig. 3 is simplified. In our experi-
ments, each network in {a j }Kj=2 is composed of three sub-

networks that output the embeddings of query {oqueryj }Kj=2,

key {okeyj }Kj=2, and value {ovalue
j }Kj=2, respectively. Eq. (9) is

calculated with the key part of om and query part of o j , i.e.,

okeym and oqueryj . While Eq. (11) is calculated with the value

part of om , i.e., ovalue
m .

4.2.3 Optimization Details

To illustrate the optimization process clearly, we merge the
optimization losses to a loss for stage 1, i.e. LS1, and a loss
for stage 2, i.e. LS2, that is,

LS1 = LCL

LS2 = λ(LI M + LCU ) + γ (LFP + LBF )
(12)

In the first stage, we initialize the model with the classifi-
cation loss LCL on the labeled source data. In the second
stage, we debias the feature extractor through the classifica-
tion loss LCU on the unlabeled source data with the pseudo
labels obtained via k-means clustering and the information
maximization loss LI M . We rectify the classifier with the
feature projection loss LFP and the bias filtering loss LBF .
λ and γ are the hyper-parameters for balancing the feature
extractor debiasing and the classifier rectification processes.

The CDG task In the CDG task, since the groud-truth
labels of all the source data are given, we directly employ
them for training instead of obtaining pseudo labels through
the clustering.

4.3 Theoretical Insights

In the SLDG task, since only one source dataset is labeled,
we put forward to rectify the classifier by performing the
semantic feature projection. For simplicity, we denote the

semantic features extracted from data X j as H j ∈ R
dh , and

let it be composed of domain-invariant factor U ∈ R
dh and

domain-specific factor/bias L j ∈ R
dh , that is,

H j = (φ j )�U + (η j )�L j , j = 1, ..., K , (13)

where φ j ∈ R
dh×dh and η j ∈ R

dh×dh are coefficient matri-
ces, which may change across the domains.

Inspired by the ability of the human in robust visual object
recognition that no matter how the domain/environment
changes, human can always accurately identify the class of
the recognized image (Zhang et al., 2020a). We assume that
there is an invariant correlation β between the semantic fea-
tures H j and the corresponding labels Y j ∈ R, meanwhile,
the labels Y j may also be biased by the domain-specific fac-
tor L j , that is,

Y j = β�H j + (ψ j )�L j , j = 1, ..., K , (14)

where β ∈ R
dh andψ j ∈ R

dh are coefficient vectors. β stays
unchanged butψ j changes across the domains. Note that we
assume E[L j ] = 0 for j = 1, ..., K . The main assumption
is summarized:

Assumption 1 The semantic features H j and the labels Y j

in each domain j satisfy Eqs. (13) and (14) respectively,
where only the domain-invariant factorU and the correlation
β stay unchanged across domains. The domain-specific and
domain-invariant factors are pairwise independent, i.e.,U ⊥
Lk and L j ⊥ Lk for j, k ∈ {1, ..., K } and j �= k.

Our goal is to identify the latent correlation β between
the features and the labels. Let m and n be an unla-
beled and a labeled source domain, respectively. We first
project the semantic features Hm of the unlabeled source
data to the semantic features Hn of the labeled source
data with a mapping matrix μ ∈ R

dh×dh , that is, μ̂ =
E[Hm(Hm)�]−1

E[Hm(Hn)�]. Then we use the projection
semantic features, i.e., Ĥn = μ̂

�Hm , to fit the labels Yn

of the labeled source and estimate the correlation β̂ =
E[Ĥn(Ĥn)�]−1[Ĥn(Yn)�], i.e., classifier rectification. We
have the theorem.

Theorem 1 Suppose there are n samples from each domain,
then β̂ is a consistent and unbiased estimator of the true

correlation β, i.e., β̂ = β + Op

(
1√
n

)
and E[β̂] = β.

Proof Assume thatwe sample n examples fromeach domain.
Let Hm ∈ R

n×dh be the matrix where i th row is the obser-
vation hmi ∈ R

dh of Hm , and other symbols are similarly
defined. The first step is to regress Hn on Hm , i.e., μ̂ =(
(Hm)�Hm

)−1
(Hm)�Hn . The second step is to regress Yn

on Ĥn = Hmμ̂, i.e., β̂ = (
(Ĥn)�Ĥn

)−1
(Ĥn)�Yn .
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By Assumption 1, we have

1

n
(Hm)�Ln =1

n

(
Uφm + Lmηm

)�Ln

=Op

(
1√
n

)
.

(15)

1

n
(Hn)�Hm =1

n

(
Uφn + Lnηn

)� · (
Uφm + Lmηm

)

=1

n
(φn)�U�Uφm + Op

(
1√
n

)
,

(16)

1

n
(Hm)�Hm

=1

n

(
Uφm + Lmηm

)� · (
Uφm + Lmηm

)

=1

n

(
(φm)�U�Uφm + (ηm)�(Lm)�Lmηm

+Op

(
1√
n

))
.

(17)

Suppose theminimumeigenvalue of (φm)�·E[UU�]·φm

is bounded away from 0, we have

(
1

n
(φm)�U�Uφm + Op

(
1√
n

))−1

=
(
(φm)� · E[UU�] · φm

)−1 + Op

(
1√
n

)
.

(18)

Since (ηm)�(Lm)�Lmηm/n is positive semidefinite matri-
ces. Hence, the minimum eigenvalue of (φm)� ·E[U (U )�] ·
φm + (ηm)� · E[Lm(Lm)�] · ηm is bounded away from 0,
then

(
1

n

(
(φm)�U�Uφm + (ηm)�(Lm)�Lmηm

+ Op

(
1√
n

)))−1

=(
(φm)� · E[UU�] · φm

+ (ηm)� · E[Lm(Lm)�] · ηm
)−1 + Op

(
1√
n

)
.

(19)

Therefore, by Eqs. (15–19), we have

β̂ =
((

Ĥn
)�

Ĥn
)−1

(Ĥn)�Yn

=
(
(Hn)�Hm(

(Hm)�Hm)−1 (
Hm)� Hn

)−1

· (Hn)�Hm(
(Hm)�Hm)−1

(Hm)�

· (
Hnβ + Lnψn)

=β + Op

(
1√
n

)
.

We then have E[β̂] = β. �	
Theorem 1 indicates that we can use the semantic fea-

tures of the unlabeled source to filter out the domain-specific
factor/bias of the labeled source and capture the domain-
invariant correlation β for more stable domain generaliza-
tion. Since our theoretical analyses are based on the linear
setting, we design the inter-domain attention module to fur-
ther improve the bias filtering process by learning from the
similarities among domains. In this way, the common parts
of the features of the unlabeled source domains are enhanced,
which helps to further remove the bias and boost the gener-
alization performance.

5 Experiments

We first implement experiments for the introduced Single
Labeled Domain Generalization (SLDG) task. We compare
our method DSBF with the standard Supervised Learn-
ing (SL) algorithm as well as the state-of-the-art algo-
rithms of Semi-Supervised Learning (SSL), Unsupervised
Domain Adaptation (UDA), Multi-Target Domain Adapta-
tion (MTDA), and Domain Generalization (DG). To further
testify the performance of our method DSBF in domain-
specific bias filtering, we then include the comparison with
the other DGmethods for the Conventional DomainGeneral-
ization (CDG) task, where the labels of all the source datasets
are provided.

5.1 Setup

5.1.1 Benchmark Datasets

Wefirst adopt two popular benchmark datasets. One isPACS
(Li et al., 2017) that contains 9,991 images from 7 classes
in 4 domains, i.e., Artpaint (Ar), Cartoon (Ca), Sketch (Sk),
and Photo (Ph). Another one isOffice-Home (Venkateswara
et al., 2017) that consists about 15,500 images of 65 cate-
gories over 4 domains, i.e., Art (Ar), Clipart (Cl), Product
(Pr), and Real-World (Rw). We then perform experiments
on a more challenging large-scale dataset called Domain-
Net (Peng et al., 2019). By following (Zhou et al., 2021b),
we use four representative domains, i.e., Clipart (Cl), Paint-
ing (Pa), Real (Re), and Sketch (Sk), for the experiments. In
order to further evaluate the performance under the scenar-
ios of more unlabeled source datasets, we construct a new
dataset Office-Caltech-Home. Specifically, we choose the
common classes fromOffice-Caltech (Gong et al., 2012) and
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Fig. 4 Example images of the datasets. Left: PACS dataset (Li et al.,
2017) with four domains, i.e., Art Painting (Ar), Cartoon (Ca), Photo
(Ph), and Sketch (Sk). Middle: Office-Home dataset (Venkateswara et
al., 2017) with four domains, i.e., Art (Ar), Clipart (Cl), Product (Pr),

and Real World (Rw). Right: our Office-Caltech-Home dataset with
eight domains, i.e., Amazon (Am), Art (Ar), Caltech (Ca), Clipart (Cl),
Dslr (Ds), Product (Pr), Real World (Rw), and Webcam (We).

Office-Home (Venkateswara et al., 2017) datasets, i.e., back-
pack, bike, calculator, keyboard, laptop (computer), monitor,
mouse, mug, and merge the two datasets to be a new dataset
Office-Caltech-Home that has 4,266 images of 8 classes in
8 domains, i.e., Amazon (Am), Webcam (We), DSLR (Ds),
Caltech (Ca), Art (Ar), Clipart (Cl), Product (Pr), and Real-
World (Rw). We discard DSLR since it only has few images.
We use the rest 7 domains with 4,145 images. Example
images are shown in Fig. 4.

5.1.2 Baseline Methods

For the experiments of the SLDG task, multiple source
datasets are used for model training but only one of them
is labeled. The first baseline method is the standard Super-
vised Learning (SL). ERM (Vapnik, 1992) is employed that
minimizes the empirical risk, i.e., cross-entropy loss of clas-
sification, on the labeled source dataset. For Semi-Supervised
Learning (SSL), both the labeled source dataset and the mix-
ture of the unlabeled source datasets are utilized.We conduct
two state-of-the-art SSL methods, i.e., Mean Teacher (Tar-
vainen & Valpola, 2017) and FixMatch (Sohn et al., 2020),
their strategies are related to knowledge distillation (Hin-
ton et al., 2015) and data augmentation, respectively. We
also compare DSBF with Unsupervised Domain Adaptation
(UDA), where the labeled source dataset and the mixture of
the unlabeled source datasets are used as the source dataset
and the unlabeled target dataset in the UDA task, respec-
tively. Several representative UDA methods are considered,
i.e., DAN (Long et al., 2015), MCD (Saito et al., 2018), and
MDD (Zhang et al., 2019b). Besides, Multi-Target Domain
Adaptation (MTDA) is considered to use the labeled source
dataset and multiple unlabeled source datasets as the labeled
source dataset andmultiple unlabeled target datasets, respec-

tively. We employ the state-of-the-art MTDA methods, i.e.,
BTDA (Chen et al., 2019) and OCDA (Liu et al., 2020) as
the baselines. Since only one labeled dataset can be utilized
in the SLDG task, we compare DSBF with the DG methods
which can be extended to this task, including data augmen-
tation based methods JiGen (Carlucci et al., 2019) and GUD
(Volpi et al., 2018), a training heuristics method RSC (Huang
et al., 2020), and a single domain method M-ADA (Qiao et
al., 2020). These works have been introduced in Sect. 2.

5.1.3 Implementation Details

Following (Carlucci et al., 2019; Dou et al., 2019; Huang et
al., 2020), we employ the pre-trained ResNet-18 (He et al.,
2016) as the feature extractor b ◦ g for all the experiments.
The architecture of each projection networks {v j }Kj=2 is a
fully-connected layer with 256 units. The classifier is a fully-
connected layer with the same units as the image classes.
For Algorithm 1, we train the model by SGD optimizer with
batchsize 64, learning rate 0.01, momentum 0.9, and weight
decay 0.001. In order to achieve efficient and stable training
of Eqs. (7–8), in each iteration, we sample data batches from
4 random classes (size of each batch is 16 for each class),
we then calculate the loss within each class and obtain the
final average loss to update model parameters. The epochs
for model initialization and bias filtering are both set to 20,
30, 20, 10 on PACS, Office-Home, Office-Caltech-Home,
DomainNet datasets respectively. We split dataset by 0.9/0.1
for training/validation. Note that we report the average clas-
sification accuracy of 3 runs with different random seeds for
the experiments of the SLDG task. We implement the base-
linemethods based on their source code and report the results
with two decimals. The DAN, MCD, and MDDmethods are
implemented based on the Transfer Learning Library https://
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github.com/thuml/Transfer-Learning-Library which reports
the results with one decinal. For the experiments of the CDG
task, we cite the results of the baseline DG methods in the
related papers. We directly use the groundtruth labels rather
than the pseudo labels from clustering in the CDG task. Since
all the source datasets are labeled in the CDG task, we are
allowed to choose one source dataset as theD1. In our exper-
iments on PACS dataset, when the target domain is Ar or
Ph, we let Sk be the labeled source dataset D1; and when
the target domain is Ca and Sk, we let Ph be the labeled
source datasetD1. For Office-Home dataset, when the target
domain is Ar or Cl, we let Pr be the labeled source dataset
D1; and when the target domain is Pr or Rw, we let Cl be the
labeled source datasetD1. In model initialization, we use all
the multi-source data for the CDG task, and only use D1 for
the SLDG task. We use default hyper-parameters, i.e., λ and
γ are set to 1, in the main experiments, and further analyze
their sensitivity later.

5.2 Results for the SLDGTask

Tables 1 and 2 report the results of the SLDG task on PACS
and Office-Home datasets, respectively.We first note that the
SSL methods, i.e., Mean Teacher and FixMatch, fail badly,
which is probably because they rely on the i.i.d. assumption
and hence severely overfit the labeled and unlabeled datasets
that actually sampled from different domains/distributions.
The next observation is that the DG methods, i.e., GUD,
JiGen, RSC, M-ADA, show comparable performance to the
standard SL method ERM, which is probably because they
can not identify the domain invariance well by only utilizing
one labeled source data. Since the UDAmethods address the
dataset shift by using both the labeled and the unlabeled data,
they are allowed to learn more effective domain-invariant
semantic information and hence perform obviously better.
The reason for theworse performance of theMTDAmethods,
i.e. OCDA and BTDA, may be that they need some strong
assumptions. For example, OCDA (Liu et al., 2020) consid-
ers a more homogeneous setting that the domain divergence
is indistinct, and it directly employs the model predictions
of the unlabeled data as pseudo labels for the model train-
ing. In comparison, the proposedDSBFmethod performs the
best on 5 and 6 sub-tasks of the 12 sub-tasks on PACS and
Office-Home datasets, respectively, and achieves the highest
average accuracy which is much higher than other methods
on both datasets. We argue that it is because DSBF method
makes full use of the unlabeled source data to filter out the
domain-specific bias and captures the invariant correlation
between the semantic features and the labels, resulting in a
well generalizable model for out-of-distribution target data.

We then report the results of the SLDG task on a more
challenging large-scale dataset, i.e., DomainNet, in Table 3.
It still shows that the semi-supervised methods may fail to

learn generalization fromdatawith distribution shift. TheDG
methods which can only make use of the labeled source data,
especially JiGen,RSC, andM-ADA, performsworse than the
UDAmethods and our method in this label-limited scenario.
Despite the UDA methods achieve good performance, they
are still surpassed by our method of DSBF since they do not
prepare for the generalization on the unseen target domains.
We show that DSBF still yields superior out-of-distribution
generalization performance on the large-scale dataset.

To further evaluate the generalization performance gain
from the unlabeled source data, we consider the scenarios
with more domains using Office-Caltech-Home dataset as
shown in Fig. 5. We find that the performance improves
obviously when only one unlabeled source dataset is used,
especially in the third group (on the right of Fig. 5) where the
labeled source domain is We and the target domain is Rw,
the utilization of the unlabeled source domainCl significantly
improves the accuracy from 80.86% to 93.58%. Moreover,
we observe a gradual improvement in performance when
givenmore unlabeled source domains. It indicates that DSBF
only needs one unlabeled source data to perform effective
domain-specific bias filtering and domain invariance learn-
ing. The bias filtering can work better when given more
unlabeled source domains, which we attribute to the invari-
ance learning of themulti-source data under the inter-domain
attention mechanism.

5.3 Results for the CDGTask

We report the results for the CDG task on PACS and Office-
Home datasets in Table 4. We observe that the proposed
DSBF method achieves the highest average classification
accuracy on both PACS and Office-Home datasets, and
performs the best onmore than halfCDGsub-tasks onOffice-
Home dataset. DSBF method has excellent performance in
effectively training a generalizable model not only in the
challenging SLDG task but also in the CDG task, which illus-
trates the versatility of the proposed domain-specific bias
filtering strategy that domain-specific bias of one domain
can be filtered out by effectively employing the data of other
source domains.

5.4 Analysis

5.4.1 Semantic Invariance Learning

Figure 6 shows the semantic information learned by super-
vised learning method ERM (Vapnik, 1992) (using only
the labeled source data) and our method DSBF (using both
the labeled and unlabeled source data). We find that DSBF
employs more effective regions of the images for visual
recognition, but ERM fails to pay attention to the most effec-
tive regions. It demonstrates that DSBF makes full use of the
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Fig. 5 Accuracy for the SLDG task on Office-Caltech-Home dataset.
A→B represents using A, B, and other domains as the labeled source,
target, and unlabeled source domains, respectively. We add one unla-
beled source dataset each time from the unlabeled source domain set

for each experiment. If no unlabeled source dataset is given (marked
with “ / ”), the experiments are implemented in the supervised learning
setting, i.e., using ERM (Vapnik, 1992) method.

Table 4 Classification accuracy (%) for the Conventional Domain Generalization (CDG) task on PACS and Office-Home datasets

Methods PACS Office-Home

Ar Ca Ph Sk Avg. Ar Cl Pr Rw Avg.

DeepAll (Carlucci et
al., 2019)

77.85 74.86 95.73 67.74 79.05 52.15 45.86 70.86 73.15 60.51

MMD-AAE (Li et
al., 2018)

75.2 72.7 96.0 64.2 77.0 56.5 47.3 72.1 74.8 62.7

RSC (Huang et al.,
2020)

83.43 80.31 95.99 80.85 85.15 58.42 47.90 71.63 74.54 63.12

CrossGrad (Shankar
et al., 2018)

79.8 76.8 96.0 70.2 80.7 58.4 49.4 73.9 75.8 64.4

D-SAMs
(D’Innocente &
Caputo, 2018)

77.33 72.43 95.30 77.83 80.72 58.03 44.37 69.22 71.45 60.77

DSON (Seo et al.,
2020)

84.67 77.65 95.87 82.23 85.11 59.37 44.70 71.84 74.68 62.90

JiGen (Carlucci et
al., 2019)

79.42 75.25 96.03 71.35 80.51 53.04 47.51 71.47 72.79 61.20

DSBF 84.13 ± 0.12 79.32 ± 0.19 95.77 ± 0.32 81.58 ± 0.18 85.20 ± 0.02 60.65 ± 0.13 47.33 ± 0.04 74.11 ± 0.08 75.89 ± 0.26 64.50 ± 0.04

The best results are emphasized in bold

Fig. 6 Grad-CAM visualization (Selvaraju et al., 2017) of the semantic
information learned by the supervised learning method ERM (Vapnik,
1992) and the proposed method DSBF. The regions in the darker red

are considered more important for the trained model to perform object
recognition (Color figure online).
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Fig. 7 T-SNE visualization of the distributions of the extracted semantic feature on PACS dataset (Ph→Sk), where each color represent a class.
Left: After the model initialization stage. Right: After the bias filtering stage (Color figure online).

Fig. 8 Classification accuracy on PACS dataset during the model ini-
tialization stage and the bias filtering stage (the labeled source domain:
Ph; the target domain: Sk; the unlabeled source domains: Ar and Ca).

unlabeled source data to filter out the domain-specific bias
in the initialized model and capture the effective semantic
information for accurate object recognition.

5.4.2 Semantic Feature Extraction

We then exploit t-SNE (Van der Maaten & Hinton, 2008) to
analyze the semantic feature distributions after themodel ini-
tialization stage and after the bias filtering stage as shown on
the left and right of Fig. 7, respectively. It is evident that after
bias filtering, DSBF extracts more discriminative semantic
features of the data by making the same-class samples gather
together. The bias filtering removes the bias in the initialized
model and generates a more generalizable model.

5.4.3 Learning Process Tracking

We plot the learning process in Fig. 8. It is observed that: (1)
In the model initialization stage, the trained model overfits

the domain-specific bias of the labeled source data Ph (red
line), and its classification accuracy rises rapidly. (2) In the
bias filtering stage, the unlabeled data, i.e., Ar and Ca, are
employed to filter out the domain-specific bias in both the
feature extractor and classifier, the classification accuracy
on the labeled source domain Ph thus drops slowly, while
the performance on the unlabeled source domains Ar (blue
line) and Ca (orange line) domains, as well as the unseen tar-
get domain Sk (green line), improves significantly. It clearly
illustrates the learning process of DSBF, which first uses the
labeled source data to initialize a discriminative model and
then utilizes the unlabeled source data to filter out its bias and
rectify the initialized model for improving its generalization
ability.

5.4.4 Ablation Study

Table 5 shows the ablation results, where DEB is feature
extractor debiasing,REC is classifier rectification, and ATT
is the inter-domain attentionmodule in the classifier rectifica-
tion.Wenote that all the three parts, i.e.,DEB,REC, andATT,
are important for DSBF to achieve the superior performance.
We then observe that feature extractor debiasing obviously
improves the performance on both datasets. It is probably
because feature extractor debiasing trains the ResNet-18 net-
work that has much more parameters for tuning than the one
fully-connected (FC) layer of the classifier trained in classi-
fier rectification (note that no matter how many parameters
the attention module has, only one FC layer of the classifier
is trained and will be used for testing the final performance).
The attention shows its effectiveness in domain similarities
learning and generalization improvement. It is also observed
that DSBF w/o REC w/o ATT is better than SHOT (Liang et
al., 2020) which uses the pseudo labels to train the classifier.
It indicates that training classifier with pseudo labels could
yield adverse effects in the SLDG task.
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Table 5 Ablation study of classification accuracy (%) on PACS and
Office-Home datasets

DEB REC ATT PACS Home
LI M LCU LFP LBF

61.11 53.62

� � � 61.47 53.64

� � � � 65.34 54.34

� � � � 65.75 55.11

� � 65.99 55.89

� � � 66.01 55.90

� � � 66.21 55.92

� � � � 66.99 55.97

� � � � � 67.12 56.40

DEB feature extractor debiasing; REC classifier rectification; ATT the
inter-domain attention module in the classifier rectification. The best
results are emphasized in bold

Fig. 9 Sensitivity analysis of the hyper-parameters λ and γ for the
SLDG task, which are used for the feature extractor debiasing and the
classifier rectification, respectively.

5.4.5 Sensitivity Analysis

We give sensitivity analysis by varying the hyper-parameters
λ and γ for the SLDG and the CDG tasks in Figs. 9 and 10,
respectively. For the SLDG task, it shows that the model per-
formance is generally stable under different hyper-parameter
settings. For the CDG task, the model prefers large value of λ
but is insensitive to γ . We argue the reason is that the groud-
truth labels are given directly in the CDG task, rather than
obtained via clustering in the SLDG task. Thus, for the CDG
task, the labels of the unlabeled data have higher reliability
and the performance would be better when assigning larger
weights, i.e., λ, to the model training with the ground-truth
labels.

5.4.6 Clustering-Based Pseudo Labels

We further analyze the performance with different iterations
of clustering-based pseudo label assignment. The results
are shown in Table 6. We first observe that it is necessary
to employ the clustering to obtain more accurate pseudo

Fig. 10 Sensitivity analysis of the hyper-parameters λ and γ for the
CDG task, which are used for the feature extractor debiasing and the
classifier rectification, respectively.

Table 6 Average (Avg.) classification accuracy (%) with different clus-
tering iterations (Iter.) on PACS and Office-Home datasets

Dataset PACS Office-Home

Iter. 0 1 2 3 0 1 2 3

Avg. 58.28 67.12 66.87 67.51 53.30 56.40 56.16 56.02

Iteration is 0: directly employing the model predictions as the pseudo
labels. The best results are emphasized in bold

labels and achieve significantly better generalization perfor-
mance. The second observation is that no further significant
improvement can be achieved by performingmore iterations.
Therefore, based on this empirical experience, we may use

Fig. 11 Changes of the parameter α of the inter-domain attention mod-
ule during training on the PACS dataset.
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clustering to achieve better generalization performance, but
it does not need to be iterated several times.

5.5 TrainableWeight Parameter of AttentionModule

We show the changes of the parameter α (see Eq. 11) of the
attention module in Fig. 11. Interestingly, it is observed that
whengiven the same labeled source domainor the same target
domain, the changes of α may show similar trend. For exam-
ple, the three subfigures with the same labeled source domain
of Sk, and the three subfigureswith the same target domain of
Sk. We argue that the reason for this phenomenon is that our
attentionmodule learns from the similarities amongdomains.
When the labeled source domain or the target domain is
given, the other domains may contain the similar common
information for learning, which leads to the similar trend of
α.

6 Conclusion

In this paper, we investigate a practical task to address the
real-world problemof high annotation costs for generalizable
model learning, i.e., Single Labeled Domain Generalization
(SLDG), where only one of the multiple source domains is
labeled. To tackle this challenging task, we propose a novel
framework called Domain-Specific Bias Filtering (DSBF),
which unifies the exploration of the labeled and the unlabeled
source data, through a model initialization stage and a bias
filtering stage, enhancing discriminability and generalization
of the model. Extensive experiments on multiple datasets
show the superior performance of DSBF for the SLDG task
and the CDG task. In future work, we may extend our work
to the scenarios with multimodal data.
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