
Subgraph Networks With Application to
Structural Feature Space Expansion

Qi Xuan ,Member, IEEE, Jinhuan Wang , Minghao Zhao, Junkun Yuan, Chenbo Fu ,

Zhongyuan Ruan , and Guanrong Chen , Life Fellow, IEEE

Abstract—Real-world networks exhibit prominent hierarchical and modular structures, with various subgraphs as building blocks. Most

existing studies simply consider distinct subgraphs as motifs and use only their numbers to characterize the underlying network.

Although such statistics can be used to describe a network model, or even to design some network algorithms, the role of subgraphs in

such applications can be further explored so as to improve the results. In this article, the concept of subgraph network (SGN) is

introduced and then applied to network models, with algorithms designed for constructing the 1st-order and 2nd-order SGNs, which

can be easily extended to build higher-order ones. Furthermore, these SGNs are used to expand the structural feature space of the

underlying network, beneficial for network classification. Numerical experiments demonstrate that the network classification model

based on the structural features of the original network together with the 1st-order and 2nd-order SGNs always performs the best as

compared to the models based only on one or two of such networks. In other words, the structural features of SGNs can complement

that of the original network for better network classification, regardless of the feature extraction method used, such as the handcrafted,

network embedding and kernel-based methods.

Index Terms—Subgraph, motif, network classification, structural feature, learning algorithm, biological network, social network

Ç

1 INTRODUCTION

MANY real-world systems can be naturally represented
by networks, such as biological networks [1], [2], col-

laboration networks [3], [4], software networks [5], [6], and
social networks [7], [8]. Studying the substructure of a net-
work, e.g., its subgraphs, is an efficient way to understand
and analyze the network [9]. In fact, subgraphs are basic
structural elements of a network, and distinct sets of sub-
graphs are usually associated with different types of net-
works. In retrospect, as shown in [10], frequent appearance
of subgraphs can reveal topological interaction patterns,
each of which performs precisely some specialized func-
tions, therefore they can be used to distinguish different
communities and various networks.

Up to now, a number of studies on network subgraphs
for graph classification have been reported. Ugander
et al. [11] treated subgraph frequency as a local property in
social network and found that subgraph frequency can
indeed provide unique insights for identifying both social

structure and graph structure in a large network. Similarly,
Vohra [12] summarized the network by stacking subgraph
frequencies into a vector as a global network property
and then classified networks into different groups, where
these frequency statistics are implemented through two
schemes [11], [13]. Moreover, in the study of biological net-
works, Grochow et al. [14] proposed a novel algorithm for
identifying larger network elements and functional motifs,
revealing the clustering properties of motifs through sub-
graph enumeration and symmetry-breaking. Without any
interaction dependencies between them, these studies sim-
ply acquired a sequence of discrete motif entities with fea-
ture information such as counting, weight, etc. to describe
the underlying network. Except for subgraph frequency sta-
tistics, Benson et al. [15] obtained the corresponding embed-
ding representation through laplacian matrix analysis
method. Moreover, in [16], an incremental subgraph join
feature selection algorithm was designed, which forces
graph classifiers to join short-pattern subgraphs so as to
generate long-pattern subgraph features. Similarly, Yang
et al. [17] proposed the NEST method which combined the
motifs and convolutional neural network.

The studies mentioned above try to reveal subgraph-
level patterns, which can be considered as network buil-
ding blocks of particular functions, to capture meso-
scopic structure. However, most of them ignored the
interaction between these subgraphs, which could be of
particular importance to represent the global structure of
subgraph-level. In order to address this, we propose a
method to establish Subgraph Networks (SGNs) of differ-
ent orders. It can be expected that such SGNs can cap-
ture the structural features of different aspects and thus

� Q. Xuan, J. Wang, C. Fu, and Z. Ruan are with the Institute of Cyberspace
Security, College of Information Engineering, Zhejiang University of
Technology, Hangzhou 310023, China. E-mail: {xuanqi, JinhuanWang,
cbfu, zyruan}@zjut.edu.cn.

� M. Zhao is with the Fuxi AI Lab, NetEase Inc., Hangzhou 310052, China.
E-mail: zhaominghao@corp.netease.com.

� J. Yuan is with the College of Computer Science and Technology, Zhejiang
University, Hangzhou 310027, China. E-mail: yuanjk@zju.edu.cn.

� G. Chen is with the Department of Electrical Engineering, City University
of Hong Kong, Hong Kong SAR, China. E-mail: eegchen@cityu.edu.hk.

Manuscript received 13 Sept. 2018; revised 28 June 2019; accepted 24 Nov.
2019. Date of publication 5 Dec. 2019; date of current version 29 Apr. 2021.
(Corresponding authors: Qi Xuan and Zhongyuan Ruan.)
Recommended for acceptance by P. Cui.
Digital Object Identifier no. 10.1109/TKDE.2019.2957755

2776 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 33, NO. 6, JUNE 2021

1041-4347 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Zhejiang University. Downloaded on December 27,2021 at 08:51:23 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-1042-470X
https://orcid.org/0000-0002-1042-470X
https://orcid.org/0000-0002-1042-470X
https://orcid.org/0000-0002-1042-470X
https://orcid.org/0000-0002-1042-470X
https://orcid.org/0000-0001-9348-3424
https://orcid.org/0000-0001-9348-3424
https://orcid.org/0000-0001-9348-3424
https://orcid.org/0000-0001-9348-3424
https://orcid.org/0000-0001-9348-3424
https://orcid.org/0000-0002-9430-5096
https://orcid.org/0000-0002-9430-5096
https://orcid.org/0000-0002-9430-5096
https://orcid.org/0000-0002-9430-5096
https://orcid.org/0000-0002-9430-5096
https://orcid.org/0000-0003-4953-070X
https://orcid.org/0000-0003-4953-070X
https://orcid.org/0000-0003-4953-070X
https://orcid.org/0000-0003-4953-070X
https://orcid.org/0000-0003-4953-070X
https://orcid.org/0000-0003-1381-7418
https://orcid.org/0000-0003-1381-7418
https://orcid.org/0000-0003-1381-7418
https://orcid.org/0000-0003-1381-7418
https://orcid.org/0000-0003-1381-7418
mailto:xuanqi@zjut.edu.cn
mailto:JinhuanWang@zjut.edu.cn
mailto:cbfu@zjut.edu.cn
mailto:zyruan@zjut.edu.cn
mailto:zhaominghao@corp.netease.com
mailto:yuanjk@zju.edu.cn
mailto:eegchen@cityu.edu.hk

may benefit the follow-up tasks, such as network classifi-
cation. Briefly, there are three steps to build an SGN from
an original network: first, detect subgraphs in the original
network; second, choose appropriate subgraphs for a task;
third, utilize the chosen subgraphs to build an SGN. Line
graph [18] thus can be considered as a special SGN, where
a link connecting two nodes in the original network is con-
sidered as a subgraph, and two subgraphs are connected
in the SGN if the corresponding two links share a same ter-
minal node. Clearly more complicated subgraphs can be
considered, e.g., three nodes with two links, so as to get a
higher-order SGN, as will be further discussed in Section 3.
The key point here is that the SGN extracts the representa-
tive parts of the original network and then assembles them
to reconstruct a new network that preserves the relation-
ship among subgraphs. Our method thus implicitly main-
tains the higher-order structures under the premise of
providing the information of local structures. And, the net-
work structure of SGN can complement the original net-
work and, as a result, the integration of their features will
benefit the subsequent structure-based algorithms design
and applications.

The main contributions of this work are summarized as
follows.

� A new concept of SGN is introduced, along with
algorithms designed for constructing the 1st-order
and 2nd-order SGNs from a given network. These
algorithms can be easily extended to construct
higher-order SGNs.

� SGN is used to obtain a series of handcrafted struc-
tural features which, together with the features auto-
matically extracted by using some advanced
network-embedding methods, kernel-based meth-
ods and depth model, provide complementary fea-
tures to those extracted from the original network.

� SGN is applied to network classification. Experi-
ments on seven groups of networks are carried out,
showing that integrating the features obtained from
SGN can indeed significantly improve the classifica-
tion accuracy in most cases, as compared to the same
feature extraction and classification methods based
only on the original networks.

The rest of the paper is organized as follows. In Section 2,
some related work about subgraph and network representa-
tion methods are briefly introduced. In Section 3, the defini-
tion of SGN is provided and algorithms for constructing the
1st-order and 2nd-order SGNs are designed. In Section 4,
handcrafted structural features are characterized, for both
the original network and SGNs. In Section 5, several auto-
matic feature extraction methods are discussed, whereas
SGNs are applied to graph classification for some real-
world networks. Finally, Section 6 concludes the investiga-
tion, with a future research outlook.

2 RELATED WORK

In this section, we review the related work of subgraph in
graph mining applications and the network representation
methods combined with depth models in recent years.

2.1 Subgraph in Graph Mining

Recently, subgraphs have been widely applied in the study
between entities in networks. For example, in [19], [20], [21],
different algorithms were designed for detecting network
subgraphs. In [22], a method for detecting strong ties was
proposed using frequent subgraphs in a social network,
where it was observed that frequent subgraphs as network
structural features could lead to good performances in alle-
viating the sparse problem for detecting strong ties on the
network. By adding time stamp to the topology, temporal
frequent subgraphs [23], [24], [25] were studied for some
time-dependent networks, such as social and communica-
tion networks, as well as biological and neural networks.
Furthermore, subgraphs were also applied to graph cluster-
ing. In [26], a graph clustering method was developed based
on frequent subgraphs, which can effectively detect com-
munities in a network. Network subgraphs deeply depict
the local structural features of the network and have impor-
tant research value in the application of graph mining.

2.2 Network Representation

The combination of subgraph structures and depth models
enriches the research methods of the network and brings
inspiration to researchers. With the rapid development of
deep learning, many graph mining and representation
methods have been proposed and tested, with practical
applications to, e.g., drug design (through studying chemi-
cal compound and proteins data) [27], [28] and market anal-
ysis (through purchase history) [29]. Methods like
word2vec [30] and doc2vec [31] have shown good perform-
ances in natural language processing (NLP), bringing some
new insights to the field of graph representation. Inspired
by these algorithms, graph2vec [32] was proposed, which
was shown to be outstanding for graph representation.
Among the existing graph mining methods, graph ker-
nel [33], [34], [35] has obtained unanimous praise in recent
years, whereas the bottleneck is its high computational cost.
As a winner from competitions on a plenty of machine
learning problems, convolutional neural network (CNN)
has attracted lots of attention, especially in the area of com-
puter vision [36], and it has been reformulated by the new
convolution operator for graph structure data [37]. It was
put forward in [38], referred to as graphconv, the first trial
of an analogy of CNN on graphs. Then, graph convolutional
network (GCN), designed in [39] as an extension to the k-
localized kernel, resolved the problem of over localization
as compared with graphconv. Based on graph neural net-
work (GNN) and capsule, Zhang et al. [40] designed the
CapsGNN, which can generate multiple embeddings for
each graph to capture network properties from different
aspects. This method was extensively tested, and achieve
the state-of-the-art results.

Network algorithms benefit from graph embedding by
automatically extracting features of arbitrary dimensions.
However, such methods still largely rely on the original net-
work, and thus may ignore important hidden structural fea-
tures. To bridge the gap, we map the original network to
different structural spaces, in terms of different SGNs. Differ-
ent from those existing subgraph-based methods [12], [15],
[17] that only enumerate a set of motifs as functional building
blocks and then match them in the original network for

XUAN ET AL.: SUBGRAPH NETWORKS WITH APPLICATION TO STRUCTURAL FEATURE SPACE EXPANSION 2777

Authorized licensed use limited to: Zhejiang University. Downloaded on December 27,2021 at 08:51:23 UTC from IEEE Xplore. Restrictions apply.

subsequent representation, our SGN model maps the sub-
graphs in the original network to the nodes in a higher-order
structural space, addressing the connections between the sub-
graphs. Therefore, it can be considered that SGN provides a
general framework to expand the structural feature space,
which can be naturally integrated into many graph represen-
tationmethods to further improve their effectiveness.

3 SUBGRAPH NETWORKS

Generally, SGN can be considered as a mapping in network
space, which maps the original node-level network to sub-
graph-level networks. In this section, SGN is first intro-
duced, followed by algorithms for constructing the 1st-
order and 2nd-order SGNs.

Definition 1 (Network). An undirected network is repre-
sented by GðV;EÞ, where V and E � ðV � V Þ denote the sets
of nodes and links, respectively. The element ðvi; vjÞ in E is
an unordered pair of nodes vi and vj, i.e., ðvi; vjÞ ¼ ðvj; viÞ,
for all i; j ¼ 1; 2; . . . ; N , where N is the number of nodes,
namely the size of the network.

Definition 2 (Subgraph). Given a network GðV;EÞ,
gi ¼ ðVi; EiÞ is a subgraph of G, denoted by gi � G if and only
if Vi � V and Ei � E. The sequence of subgraphs is denoted as
g ¼ fgi � Gji ¼ 1; 2; . . . ; ng, n � N .

Definition 3 (SGN: Subgraph Network). Given a network
GðV;EÞ, the SGN, denoted byG� ¼ LðGÞ, is a mapping fromG
to G�ðV �; E�Þ, with the sets of nodes and links denoted by
V � ¼ fgjjj ¼ 0; 1; . . . ; ng and E� � ðV � � V �Þ, respectively.
Two subgraphs gi and gj are connected if they share some common
nodes or links in the original network, i.e., Vi \ Vj 6¼ ;. Similarly,
the element ðgi; gjÞ in E� is an unordered pair of subgraphs gi
and gj, i.e., ðgi; gjÞ ¼ ðgj; giÞ, i ¼ 1; 2; . . . ; nwith n � N .

According to the definition of SGN, one can see that: (i)
subgraph is a part of the original network; (ii) SGN is
derived from a higher-order mapping of the original net-
work G; (iii) the connecting rule between two subgraphs
needs to be clarified. Following the approach of [41], where
the problem of graph representation in a domain with
higher-order relations is discussed, constructing sets of
nodes as p-chains, corresponding to points (0-chains), lines
(1-chains), triangles (2-chains), etc., here the new frame-
work constructs subgraphs as 1st order, 2nd order, etc. For
clarity, three steps in building the new framework are out-
lined as follows.

� Detecting subgraphs from the original network. Net-
works are rich of subgraph structures, with some
subgraphs occurring frequently, e.g., motifs [20]. Dif-
ferent kinds of networks may have different local
structures, captured by different distributions of var-
ious subgraphs.

� Choosing appropriate subgraphs. Generally, sub-
graphs should not be too large, since in this case SGN
may only contain a very small number of nodes, mak-
ing the subsequent analysis less meaningful. More-
over, the chosen subgraphs should be connected to
each other, i.e., they should share some common part
(nodes or links) of the original network, so that higher-
order structural information can emerge.

� Utilizing the subgraphs to build SGN. After extract-
ing enough subgraphs from the original network,
connections among them are established following
certain rules so as to build SGN. Here, for simplicity,
consider two subgraphs. They are connected if and
only if they share the same nodes or links from the
original network. There certainly can be other con-
necting rules, leading to totally different SGNs,
which will be discussed elsewhere in the future.

In this paper, themost fundamental subgraphs, i.e., line and
triangle, are chosen as subgraphs, since they are simple and
relatively frequently appearing in most networks. Thus, two
kinds of SGNs of different orders are constructed as follows.

3.1 First-Order SGN

In the case of first-order, a line, or a link, is chosen as a
subgraph, based on which SGN is built, denoted by
SGNð1Þ. The 1st-order SGN is also known as a line graph,
where the nodes are the links in the original network, and
two nodes are connected if the corresponding links share a
same end node.

Algorithm 1. Constructing SGNð1Þ

Input: A network GðV;E) with node set V and link set
E � ðV � V Þ.
Output: SGNð1Þ, denoted by G0ðV 0; E0).
1 Initialize a node set V 0 and a link set E0;
2 for each v 2 V do
3 get the neighbor set V of v;
4 for each v 2 V do
5 ‘ = sorted([v, v]);
6 ‘str merge the nodes in list ‘ into a string;
7 add the new node ‘str into eV ;
8 end
9 for i; j 2 eV and i 6¼ j do
10 add the link ði; jÞ into E0;
11 end
12 add eV into V 0;
13 end
14 return G0ðV 0; E0);

The process to build SGNð1Þ from a given network is
shown in Fig. 1. In this example, the original network has 6
nodes connected by 6 links. First, extract lines as subgraphs,
labeled them by their corresponding end nodes, as shown
in Fig. 1b. These lines are treated as nodes in SGN. Then,
connect these lines based on their labels, i.e., two lines are
connected if they share one same end node, as shown in
Fig. 1c. Finally, obtain SGN with 6 nodes and 8 links, as
shown in Fig. 1d. A pseudocode of constructing SGNð1Þ is
given in Algorithm 1. The input of this algorithm is the orig-
inal network GðV;E) and the output is the constructed
SGNð1Þ, denoted by G0ðV 0; E0), where V 0 and E0 represent
the sets of nodes and links in the SGNð1Þ, respectively.

3.2 Second-Order SGN

Now, construct higher-order subgraphs by considering the
connection patterns among three nodes. There are more
diverse connection patterns among three nodes than the
case of two nodes. In theory, there are 13 possible non-

2778 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 33, NO. 6, JUNE 2021

Authorized licensed use limited to: Zhejiang University. Downloaded on December 27,2021 at 08:51:23 UTC from IEEE Xplore. Restrictions apply.

isomorphic connection patterns among three nodes [20] in a
directed network, as shown in Fig. 2a. This number
decreases to 2 in an undirected network, namely only open
and closed triangles, as shown in Fig. 2b. Here, only con-
nected subgraphs are considered, while those with less than
two links are ignored. Compared with lines, triangles can
provide more insights about the local structure of a net-
work [42]. For instance, in [43], the evolution of triangles in
a Google+ online social network was studied, obtaining
some valuable information during the emerging and prun-
ing of various triangles.

The open triangles are defined as subgraphs to establish
the 2nd-order SGN, denoted by SGNð2Þ. Here, second-order
means that there are two links in each open triangle, and
two open triangles are connected in SGNð2Þ if they share a
same link. Note that same link rather than same node is used
here to avoid obtaining a very dense SGNð2Þ. This is because
a dense network, with each pair of nodes connected with a
higher probability, tends to provide less structural informa-
tion in general.

The iterative process to build SGNð2Þ from an original
network is shown in Fig. 3. First, extract lines, labeled by
their corresponding end nodes, as shown in Fig. 3b, to
establish SGNð1Þ. Then, in the line graph SGNð1Þ, further
extract lines to obtain open triangles as subgraphs, labeled

by their corresponding three nodes, as shown in Fig. 3c.
Finally, obtain SGNð2Þ with 8 nodes and 14 links, as shown
in Fig. 3d. A pseudocode of constructing SGNð2Þ is given in
Algorithm 2. The input of this algorithm is the original net-
work GðV;E) and the output is the constructed SGNð2Þ,
denoted by G00ðV 00; E00), where V 00 and E00 represent the sets
of nodes and links in the SGNð2Þ, respectively.

Algorithm 2. Constructing SGNð2Þ

Input: A network GðV;E) with node set V and link set
E � ðV � V Þ.
Output: SGNð2Þ, denoted by G00ðV 00; E00).

1 Initialize a node set V 00 and a link set E00;
2 for each v 2 V do
3 get the neighbors set V of v;
4 eV get the full combination of node pairs in the neigh-

bor collection;
5 for each ðv1;v2Þ 2 eV do
6 e‘ = [v;v1;v2];
7 e‘str merge the nodes in list e‘ into a string;
8 add the new node e‘str into eV ;
9 end
10 for i; j 2 eV and i 6¼ j do
11 add the edge (i; j) into E00 ;
12 end
13 add eV into V 00;
14 end
15 return G00ðV 00; E00);

Clearly, the new method can be easily extended to con-
struct higher-order SGNs by choosing proper subgraphs
and connecting rules. For instance, based on Algorithms 1
and 2, for the network shown in Fig. 3d, one can further
label each link by the 4 numbers from the end nodes, i.e.,
these numbers correspond to the 4 nodes in the original net-
work. Then, one can treat each link with a different label as
a node, and connect them if they share 3 same numbers, so
as to establish the 3rd-order SGN.

Fig. 2. The connection patterns among three nodes for (a) directed and
(b) undirected networks.

Fig. 1. The process of building SGNð1Þ from a given network: (a) The
original network, (b) extracting lines as subgraphs, (c) establishing con-
nections among these lines, and (d) forming SGNð1Þ.

Fig. 3. The process to build SGNð2Þ from a given network: (a) The original
network, (b) extracting lines, (b) building SGNð1Þ and extracting open tri-
angles as subgraphs, and (d) establishing connections among these
open triangles to obtain SGNð2Þ.

XUAN ET AL.: SUBGRAPH NETWORKS WITH APPLICATION TO STRUCTURAL FEATURE SPACE EXPANSION 2779

Authorized licensed use limited to: Zhejiang University. Downloaded on December 27,2021 at 08:51:23 UTC from IEEE Xplore. Restrictions apply.

It is interesting to investigate such a higher-order SGN.
However, as subgraphs become too large, the SGN may
contain only few nodes, making the network structure less
informative. It may be argued that there might be some
functional subgraphs in certain networks, which could be
better blocks to be used to build SGNs. However, this may
not be true. Take the compound networks in chemistry as
examples, e.g., benzene ring, and other functional groups
such as hydroxyl group, carboxyl group and aldehyde
group, which play an important role in the properties of
organic substances. In such networks, however, one usually
cannot choose the benzene ring as a building block, since
most of these networks are of small sizes and contain a
small number of benzene rings, as shown in Fig. 4. In this
case, if one uses benzene rings as subgraphs, an SGN will
be built containing only three nodes, with one isolated from
the other two. As such, this SGN can hardly provide suffi-
cient information to distinguish itself from the other sub-
stances, hence will not be useful.

4 NETWORK ATTRIBUTES

Now, besides the original network, denoted by SGNð0Þ for sim-
plicity, there are two SGNs, i.e., SGNð1Þ and SGNð2Þ. These net-
works together may provide more comprehensive structural
information for subsequent applications. In this paper, the
focus is on its application to network classification. A typical
procedure for accomplishing the task consists of two steps: first,
extract network structural features; second, design a machine
learning method based on these features to realize the classifi-
cation. In network science, there are many classic topological
attributes, which have beenwidely used in link prediction [44],
graph classification [45] and so on. Here, the following hand-
crafted network features are used to design the classifier.

� Number of Nodes (N): Total number of nodes in the
network.

� Number of links (L): Total number of links in the
network.

� Average degree (K): The mean value of links con-
nected to a node in the network.

� Percentage of leaf nodes (P): A node of degree 1 is
defined as a leaf node. Suppose there are totally F
leaf nodes in the network. Then

P ¼ F

N
: (1)

� Average clustering coefficient (C): For node vi, the clus-
tering coefficient represents the probability of a con-
nection between any two neighbors of vi. Suppose

that there are ki neighbors of vi and these nodes are
connected by Li links. Then, the average clustering
coefficient is defined as

C ¼ 1

N

XN
i¼1

2Li

kiðki � 1Þ : (2)

� Largest eigenvalue of the adjacency matrix (�). The adja-
cency matrix A of the network is an N �N matrix,
with its element aij ¼ 1 if nodes vi and vj are con-
nected, and aij ¼ 0 otherwise. In this step, calculate
all the eigenvalues of A and choose the largest one.

� Network density (D). Given the number of nodes N
and the number of links L, network density is
defined as

D ¼ 2L

NðN � 1Þ : (3)

� Average betweenness centrality (CB). Betweenness cen-
trality is a centrality metric based on shortest paths.
The average betweenness centrality of the network is
defined as

CB ¼
1

N

XN
i¼1

X
s6¼i6¼t

ni
st

gst
; (4)

where gst is the number of shortest paths between vs
and vt, and ni

st is the number of shortest paths
between vs and vt that pass through vi.

� Average closeness centrality (CC). The closeness cen-
trality of a node in a connected network is defined as
the reciprocal of the average shortest path length
between this node and the others. The average close-
ness centrality is defined as

CC ¼
1

N

XN
i¼1

n� 1Pn
j¼1 dij

; (5)

where dij is the shortest path length between nodes
vi and vj.

� Average eigenvector centrality (CE). Usually, the
importance of a node depends not only on its degree
but also on the importance of its neighbors. Eigen-
vector centrality is another measure of the impor-
tance of a node based on its neighbors, which is
defined as

CE ¼
1

N

XN
i¼1

xi ; (6)

where xi represents the importance of node vi and is
calculated based on the following equation:

xi ¼ a
XN
j¼1

aijxj ; (7)

where a is a preset parameter, which should be less
than the reciprocal of the maximum eigenvalue of
the adjacency matrix A.

Fig. 4. A compound network, where each node denotes an atom and its
corresponding SGN obtained by taking benzene rings as subgraphs.

2780 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 33, NO. 6, JUNE 2021

Authorized licensed use limited to: Zhejiang University. Downloaded on December 27,2021 at 08:51:23 UTC from IEEE Xplore. Restrictions apply.

� Average neighbor degree (DN). Neighbor degree of a
node is the average degree of all the neighbors of
this node, which is defined as

DN ¼
1

N

XN
i¼1

1

ki

X
vj2Vi

kj ; (8)

whereVi is a set of the neighbors of node vi, and kj is
the degree of node vj 2 Vi.

Note that, among the above 11 features, number of nodes
(N), number of links (L), average degree (K) and network
density (D) are the most basic properties of a network [46].
Average clustering coefficient (C) [47] is also a very popular
metric to quantify the link density in ego networks. The per-
centage of leaf nodes (P) can distinguish whether a network
is tree-like or rich with rings. The largest eigenvalue of the
adjacency matrix (�) is chosen since the eigenvalues are the
isomorphic invariant of a graph, which can be used to esti-
mate many static attributes, such as connectivity, diameter,
etc. Average neighbor degree (DN) captures the 2-hop infor-
mation. Also, centrality measures are indicators of the
importance (status, prestige, standing, and the like) of a
node in a network, therefore, we also use average between-
ness centrality (CB), average closeness centrality (CC), and
average eigenvector centrality (CE) to describe the global
structure of a network.

4.1 Datasets

Experiments were conducted on 7 real-world network data-
sets, as introduced in the following, with each containing
two classes of networks. The first 5 datasets are about bio-
and chemo-informatics, while the last two are social net-
works. The basic statistics of these datasets are presented in
Table 1.

� MUTAG. This dataset is about heteroaromatic nitro
and mutagenic aromatic compounds, with nodes
and links representing atoms and the chemical
bonds between them, respectively. They are labeled
according to whether there is a mutagenic effect on a
special bacteria [48].

� PTC. This dataset includes 344 chemical compound
graphs, with nodes and links representing atoms
and the chemical bonds between them, respectively.
Their labels are determined by their carcinogenicity
for rats [49].

� PROTEINS. This dataset comprises of 1,113 graphs.
The nodes are Secondary Structure Elements (SSEs)
and the links are neighbors in the amino-acid
sequence or in the 3D space. These graphs represent
either enzyme or non-enzyme proteins [50].

� NCI1 & NCI109. These two datasets comprise of
4,110 and 4,127 graphs, respectively. The nodes and
links represent atoms and chemical bonds between
them, respectively. They are two balanced subsets of
the datasets of chemical compounds screened for the
activities against non-small cell lung cancer and
ovarian cancer cell lines, respectively. The positive
and negative samples are distinguished according to
whether they are effective against cancer cells [2].

� IMDB-B. This dataset is about movie collaboration,
which is collected from IMDB, containing lots of
information about different movies. Each graph is an
ego-network, where nodes represent actors or
actresses and links indicate whether they appear in
the same movie. Each graph is categorized into one
of the two genres (Action and Romance) [3].

� REDDIT-B. This dataset is crawled from Reddit,
which is composed of submission graphs from popu-
lar subreddits. Each graph corresponds to an online
discussion thread, where nodes are users, and there
is an link between two nodes if one of them
responded to the other’s comments. The four popu-
lar subreddits are IAmA, AskReddit, TrollXChromo-
somes and atheism. There are also two categories of
graphs: IAmA and AskReddit are two QA-based
subreddits and TrollXChromosomes and atheism
are two discussion-based subreddits [35].

4.2 Benefits of SGN

Here, take the MUTAG dataset as an example to show that
SGNs of different orders may capture different aspects of a
network structure.

First, a positive sample and a negative one are chosen
from the MUTAG dataset, with their SGNð0Þ, SGNð1Þ and
SGNð2Þ visualized in Fig. 5. To facilitate a comparison, the
numbers of nodes and links of these networks are also

TABLE 1
Basic Statistics of the 7 Datasets

Dataset #Graphs #Classes #Positive #Negative

MUTAG 188 2 125 63
PTC 344 2 152 192
PROTEINS 1113 2 663 450
NCI1 4110 2 2057 2053
NCI109 4127 2 2079 2048
IMDB-B 1000 2 500 500
REDDIT-B 2000 2 1000 1000

#Graphs is the number of graphs. #Classes is the number of classes. #Positive
and #Negative are the numbers of graphs in the two different classes.

Fig. 5. SGNð0Þ, SGNð1Þ and SGNð2Þ as well as the numbers of nodes and
links for (a) positive and (b) negative samples in the MUTAG dataset.

XUAN ET AL.: SUBGRAPH NETWORKS WITH APPLICATION TO STRUCTURAL FEATURE SPACE EXPANSION 2781

Authorized licensed use limited to: Zhejiang University. Downloaded on December 27,2021 at 08:51:23 UTC from IEEE Xplore. Restrictions apply.

presented in the figure. Here, a positive sample means that
this compound has mutagenic effect on the bacteria; other-
wise, it is negative. As can be seen, although the original
networks of the two samples have quite similar sizes, their
difference is seemingly enlarged in the higher-order SGNs;
more precisely, the numbers of nodes and links in SGN
increase faster for the positive sample than the negative one
as the order increases.

Then, the handcrafted network features are visualized
by using t-SNE in Fig. 6, where the networks in MUTAG
can indeed be distinguished to a certain extent by these
features of the original network, the 1st-order SGN and the
2nd-order SGN, respectively. Moreover, when all the fea-
tures are put together, it appears that these networks can
be better distinguished, indicating that SGNs of different
orders and the original network may complement to each
other. Therefore, integrating the structural information of
all these networks may significantly improve the perform-
ances of the subsequent algorithms designed based on net-
work structures.

5 EXPERIMENTS

With the rapid growth of real-world graph data, network
classification is becoming more and more important, and a
number of effective network classification methods [51],
[52], [53] have been proposed in recent years. Along this
line of research, as an application of the proposed SGN,
classifiers are designed based on the structural features
obtained from SGNs as well as from the original networks.

5.1 Automatic Feature Extraction Methods

Besides those handcrafted features, one can also use some
advanced methods, such as network embedding methods,
to automatically generate a feature vector of certain dimen-
sion from the given network. Under the present framework,
such automatically generated feature vectors can also be
further expanded based on SGNs.

Network embedding method, graph2vec, and two graph
kernel-based methods, subtree kernel WL and deep WL
methods, and depth model algorithm CapsGNN, are chosen
as automatic feature extraction methods.

� Graph2vec [32]. This is the first unsupervised
embedding approach for an entire network, which
is based on the extending word-and-document
embedding techniques that has shown great advan-
tages in NLP. Similarly, graph2vec establishes the
relationship between a network and the rooted

subgraphs using a similar model to doc2vec [31].
Graph2vec first extracts rooted subgraphs and pro-
vides corresponding labels into the vocabulary, and
then trains a skip-gram model to obtain the repre-
sentation of the entire network.

� WL [34]. This is a rapid feature extraction scheme
based on the Weisfeiler-Lehman (WL) test for iso-
morphism on graphs. It maps the original network
to a sequence of graphs, with node attributes captur-
ing both topological and label information. The key
idea of the algorithm is to augment the node labels
by the sorted set of node labels of neighboring nodes,
and compress these augmented labels into new and
short labels. These steps are then repeated until the
node label sets of the two compared networks differ,
or the number of iterations reaches a preset value. It
should be noted that, to facilitate the expansion of
the new model, the sub-structure frequency vectors,
instead of the kernel matrix K, are used as the inputs
to the new classifier.

� Deep WL [35]. This provides a unified framework
that leverages the dependency information of sub-
structures by learning latent representations. The dif-
ferences from the WL kernel generate a corpus of
sub-structures by integrating language-modeling
and deep-learning techniques [54], where a co-occur-
rence relationship of sub-structures is preserved and
sub-structure vector representations are obtained
before the kernel is computed. Then, a sub-structure
similarity matrix, M, is calculated by the matrix V
with each column representing a sub-structure vec-
tor. Denote by P the matrix with each column repre-
senting a sub-structure frequency vector. Then,
according to the definition of kernel

K ¼ PMPT ¼ PVVTPT ¼ HHT; (9)

one can use the columns in the matrixH ¼ PV as the
inputs to the classifier.

� CapsGNN [40]: This method was inspired by Cap-
sNet, which adopted the concept of capsules to over-
come the weakness of existing GNN-based graph
embedding algorithms. In particular, CapsGNN
extracts node features in the form of capsules and
utilizes the routing mechanism to capture important
information at the graph level. The model generates
multiple embeddings for each graph so as to capture
graph properties from different aspects.

Fig. 6. The t-SNE visualization of handcrafted network features. The same color of points represent the same class of networks in MUTAG.

2782 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 33, NO. 6, JUNE 2021

Authorized licensed use limited to: Zhejiang University. Downloaded on December 27,2021 at 08:51:23 UTC from IEEE Xplore. Restrictions apply.

In this study, for graph2vec, the embedding dimension is
adopted according to [32]. Graph2vec is based on the rooted
subgraphswhich are adopted in theWLkernel. The parameter
height ofWL kernel is set to 3. Since the embedding dimension
is predominant for learning performances, a commonly-used
value of 1,024 is adopted. The other parameters are set to
defaults: the learning rate is set to 0.5, the batch size is set to
512 and the epochs is set to 1,000. ForWL andDeepWL, accord-
ing to [35], the Weisfelier-Lehman subtree kernel is used to
built the corpus and the height of which is set to 2. Then, the
Maximum Likelihood Estimation (MLE) is used to compute
the kernel in the WL method. Furthermore, the same parame-
ter setting as WL is chosen, with the embedding dimension
equal to 10, window size equal to 5 and skip-gram used for the
word2vec model in the deep WL method. We adopt the

default parameters for CapsGNN and flatten the multiple
embeddings of each graph as the input.

Without loss of generality, the well-known logistic
regression is chosen as the new classification model. Mean-
while, for each feature extraction method, the feature space
is first expanded by using SGNs, and then the dimension of
the feature vectors is reduced to the same value as that of
the feature vector obtained from the original network using
PCA in the experiments, for a fair comparison. Each dataset
is randomly split into 9 folds for training and 1 fold for test-
ing. Here, the F1-Score is adopted as the metric to evaluate
the classification performance

F1 ¼
2PR

P þR
; (10)

TABLE 2
Classification Results on the 7 Datasets, in Terms of F1-Score, Based on Different Feature

Extraction Methods and Combinations of SGNs

XUAN ET AL.: SUBGRAPH NETWORKS WITH APPLICATION TO STRUCTURAL FEATURE SPACE EXPANSION 2783

Authorized licensed use limited to: Zhejiang University. Downloaded on December 27,2021 at 08:51:23 UTC from IEEE Xplore. Restrictions apply.

where P and R are the precision and recall, respectively. To
exclude the random effect of the fold assignment, experi-
ment is repeated for 500 times and then the average
F1-Score and its standard deviation are recorded.

5.2 Computational Complexity

Now, the computational complexity in building SGNs is
analyzed. Denote by jV j and jEj the numbers of nodes and
links, respectively, in the original network. The average
degree of the network is calculated by

K ¼ 1

jV j
XjV j
i¼1

ki ¼
2jEj
jV j ; (11)

where ki is the degree of node vi. Based on Algorithm 1, the
time complexity in transforming the original network to
SGNð1Þ is

T 1 ¼ OðKjV j þ jEj2Þ ¼ OðjEj2 þ jEjÞ ¼ OðjEj2Þ : (12)

Then, the number of nodes in SGNð1Þ is equal to jEj and the
number of links is

PjV j
i¼1 k

2
i � jEj � jEj

2 � jEj [18]. Similarly,
one can get the time complexity in transforming SGNð1Þ to
SGNð2Þ, as

T 2 � OððjEj2 � jEjÞ2Þ ¼ OðjEj4Þ : (13)

5.3 Experiment Results

As described in Section 3, the proposed SGNs can be used to
expand structural feature spaces. To investigate the effec-
tiveness of the 1st-order and the 2nd-order SGNs, i.e.,
SGNð1Þ and SGNð2Þ, for each feature extraction method, the
classification results are compared on the basis of only one
network, i.e., SGNð0Þ, SGNð1Þ and SGNð2Þ, respectively; on
the basis of two networks, i.e., SGNð0Þ together with SGNð1Þ

and SGNð0Þ together with SGNð2Þ, denoted by SGNð0;1Þ and
SGNð0;2Þ, respectively; and on the basis of three networks,
i.e., SGNð0Þ together with SGNð1Þ and SGNð2Þ, denoted as
SGNð0;1;2Þ. For a fair comparison, PCA is used to compress
the feature vectors to the same dimension for each feature
extraction method, before they are input into the logistic
regression model.

The results are shown in Table 2, where one can see that,
for a single network case, the original network seems to

provide more structural information, i.e., the classification
model based on SGNð0Þ performs better, in terms of higher
F1-Score, than those based on SGNð1Þ or SGNð2Þ, in most
cases. This is reasonable, because there must be information
loss in the processes to build SGNs. However, it still
appears to be dependent on the feature extraction method
used. For instance, when the Deep WL is adopted, better
classification results can be obtained based on SGNð1Þ or
SGNð2Þ than SGNð0Þ for 2 datasets, while when handcrafted
features are used, even better classification performance is
realized based on the 1st-order or 2nd-order SGNs than the
original network in 3 datasets. More interestingly, the classi-
fication models based on two networks, i.e., SGNð0;1Þ and
SGNð0;2Þ, perform better than those based on a single net-
work, while the model based on three networks, i.e.,
SGNð0;1;2Þ, performs the best in most cases.

The gain G on F1-Score is calculated, when all the three
networks are used together, i.e., SGNð0;1;2Þ, compared with
that when only the original network is used, i.e., SGNð0Þ,
which is defined to be the relatively difference between
their corresponding F1-Score

G ¼ F
ð0;1;2Þ
1 � F

ð0Þ
1

F
ð0Þ
1

� 100% : (14)

The gains are also presented in Table 2, where one can see
that the classification performance is indeed significantly
improved in all the 35 cases. Particularly, in 17 cases, the
gains are larger than 5 percent, while in 7 cases, they are
even larger than 10 percent. These results indicate that the
1st-order and the 2nd-order SGNs can indeed complement
the original network regarding the structural information,
thus benefiting network classification. Surprisingly, it is
found that the chosen handcrafted features based on
SGNð0;1;2Þ outperforms the other automatically generated
features that use more advanced network-embedding or
graph-kernel based methods even depth model, in 3 out of
7 datasets, i.e., PTC, PROTEINS and IMDB-B. This phenom-
enon indicates that, compared with those automatically
generated ones, properly chosen traditional structural fea-
tures are of particular advantage in the proposed frame-
work, in the sense that they are not only more interpretable
due to their clear physical meanings, but also equally effec-
tive in designing subsequent structure-based algorithms,
e.g., for network classification.

Fig. 7. The importance of handcrafted features in logistic regression model for network classification using SGNð0Þ, SGNð1Þ and SGNð2Þ together in
MUTAG dataset.

2784 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 33, NO. 6, JUNE 2021

Authorized licensed use limited to: Zhejiang University. Downloaded on December 27,2021 at 08:51:23 UTC from IEEE Xplore. Restrictions apply.

In addition, the feature importance for the task of net-
work classification is investigated by using logistic regres-
sion. Denote by bi the coefficient of feature xi in the model,
and suppose that there are M features in total. Then, the
importance of feature xi is defined as

I ¼ jbijPM
k¼1 jbkj

� 100% : (15)

Taking MUTAG for example, the results are visualized in
Fig. 7. Overall, the features in SGNð0Þ are most important,
since they determine 37.68 percent of the model, while the
features in SGNð2Þ are more important than those in SGNð1Þ,
since they determine 35.01 and 27.31 percent of the model,
respectively. When focusing on a single feature, it is found
that the clustering coefficient C, the percentage of leaf nodes
P , and the average neighbor degree DN , are the top three
most important features, and they together determine more
than 50 percent of the model. Interestingly, it appears that
different SGNs address different aspects of the network
structure in the classification task. For instance, the most
important feature in SGNð2Þ is the clustering coefficient,
while the coefficient for this feature in SGNð0Þ is zero since
there is no triangle in the networks in MUTAG dataset.
Moreover, the largest eigenvalue of the adjacency matrix �
and the average degree K in SGNð0Þ are relatively impor-
tant, while those in SGNð1Þ and SGNð2Þ have less effect on
the model. These results confirm once again that SGNs
indeed complement the original network to achieve better
network classification performance.

Furthermore, we also visualize the average F1-Scores
obtained by using different feature extraction methods
under different combinations of SGNs, as shown in Fig. 8.
Note that here we also consider the third-order SGNs, in
order to present the changing trends of F1-Scores with the
number of SGNs more clearly. Indeed, we can find that inte-
grating higher-order SGNs generally helps to capture more
structural information, leading to higher classification per-
formance. However, such benefit seems to be shrunk when
we go further, i.e., the improvement of F1-Score from
SGNð0;1;2Þ to SGNð0;1;2;3Þ is relatively small, while the

Fig. 8. Average F1-Scores obtained by using different feature extraction methods under different combinations of SGNs.

Fig. 9. Average execution time to establish SGNs of different orders on
the seven datasets.

XUAN ET AL.: SUBGRAPH NETWORKS WITH APPLICATION TO STRUCTURAL FEATURE SPACE EXPANSION 2785

Authorized licensed use limited to: Zhejiang University. Downloaded on December 27,2021 at 08:51:23 UTC from IEEE Xplore. Restrictions apply.

computational complexity increases quite fast. And this is
the reason why we only consider first-order and second-
order SGNs in most parts of this work.

To address the computational complexity of our method,
we record the average execution time to establish SGNs of
different orders on the seven datasets, including MUTAG,
PTC, PROTEINS, NCI1, NCI109, IMDB-B and REDDIT-B.

The results are shown in Fig. 9, where we can see that execu-
tion time increases fast as the order of SGN and the network
size increase. One possible reason is that here the subgraph
we chose is relatively simple, making the SGNs of higher-
order even more complicated than those of lower-order.
Therefore, one way to decrease the computational complex-
ity is to choose more complex subgraphs to establish

Fig. 10. Average F1-Score as functions of the size of the training set (represented by the fraction of samples in the training set), for various feature
extraction methods on different datasets, based on SGNð0Þ, SGNð0;1Þ, SGNð0;2Þ and SGNð0;1;2Þ, respectively.

2786 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 33, NO. 6, JUNE 2021

Authorized licensed use limited to: Zhejiang University. Downloaded on December 27,2021 at 08:51:23 UTC from IEEE Xplore. Restrictions apply.

simpler higher-order SGNs. Another way to accelerate this
process is to adopt parallel computing mechanism, which
will be our focus in future work.

To address the robustness of the classification model
against the size variation of the training set, theF1-Score is cal-
culated for the network classification task, using various sizes
of training sets (from 10 to 90 percent, within a 10 percent
interval). For each size, the training and test sets are randomly
divided, which is repeated for 500 times with the average
result recorded. The results are shown in Fig. 10 for various
feature extraction methods on different datasets. It can be
seen that the classification results based on SGNð0Þ, SGNð1Þ

and SGNð2Þ together are always the best, and the results based
on SGNð0Þ and SGNð1Þ together, or SGNð0Þ and SGNð2Þ

together, are always better than those based only on the origi-
nal network SGNð0Þ. This confirms that the simulation results
are quite robust to the variation of the training set size. For fur-
ther study, our source codes are available online.1

6 CONCLUSION

In this paper, the concept of subgraph network (SGN) is
introduced, along with algorithms developed for construct-
ing the 1st-order and 2nd-order SGNs, which can expand
the structural feature space. As a multi-order graph repre-
sentation method, various orders of SGNs can significantly
enrich the structural information and thus benefit the net-
work feature extraction methods to capture various aspects
of the network structure. Also, the effectiveness of the 1st-
order and 2nd-order SGNs are verified. Moreover, the
handcrafted features, as well as the features automatically
generated by network representation methods including
graph2vec and kernel-based methods including Weisfeiler-
Lehman (WL) and deep WL methods and CapsGNN
method, are used in experiments for network classification
on seven real-world datasets.

The experimental results show that the classification
model based on the features of the original network
together with the 1st-order and 2nd-order SGNs always per-
forms the best, compared with those based only on a single
network, either the original one, the 1st-order or the 2nd-
order SGN, or those based on a pair of them. This demon-
strates that SGNs can indeed complement the original net-
work on structural information and thus benefit the
subsequent network classification algorithms, no matter
which feature extraction method is adopted. More interest-
ingly, it is found that the model based on handcrafted fea-
tures performs even better than those based on the features
automatically generated by more advanced methods, such
as graph2vec, for most datasets. This finding suggests that,
in general, properly chosen structural features with clear
physical meanings may be effective in designing structure-
based algorithms.

Future research may focus on extracting more types of
subgraphs to establish SGNs of higher diversity for both
static and temporal networks, so as to capture the network
structural information more comprehensively, to design
consequent algorithms for network classification and per-
haps other tasks as well.

ACKNOWLEDGMENTS

The authors would like to thank all the members in the
IVSN Research Group, Zhejiang University of Technology
for the valuable discussion about the ideas and technical
details presented in this article. This work was partially sup-
ported by the National Natural Science Foundation of China
under Grant 61973273 and Grant 61572439, by the Zhejiang
Provincial Natural Science Foundation of China under
Grant LR19F030001, and by the Hong Kong Research Grants
Council under the GRF Grant CityU11200317.

REFERENCES

[1] M. Walter et al., “Visualization of protein interactions in living
plant cells using bimolecular fluorescence complementation,”
Plant J., vol. 40, no. 3, pp. 428–438, 2004.

[2] N. Wale, I. A. Watson, and G. Karypis, “Comparison of descriptor
spaces for chemical compound retrieval and classification,”
Knowl. Inf. Syst., vol. 14, no. 3, pp. 347–375, 2008.

[3] D. Nguyen, W. Luo, T. D. Nguyen, S. Venkatesh, and D. Phung,
“Learning graph representation via frequent subgraphs,” in Proc.
SIAM Int. Conf. Data Mining, 2018, pp. 306–314.

[4] Q. Xuan, Z.-Y. Zhang, C. Fu, H.-X. Hu, and V. Filkov, “Social syn-
chrony on complex networks,” IEEE Trans. Cybern., vol. 48, no. 5,
pp. 1420–1431, May 2018.

[5] Q. Xuan, A. Okano, P. Devanbu, and V. Filkov, “Focus-shifting
patterns of OSS developers and their congruence with call
graphs,” in Proc. 22nd ACM SIGSOFT Int. Symp. Found. Softw.
Eng., 2014, pp. 401–412.

[6] A. Mockus, R. T. Fielding, and J. D. Herbsleb, “Two case studies of
open source software development: Apache and Mozilla,” ACM
Trans. Softw. Eng. Methodol., vol. 11, no. 3, pp. 309–346, 2002.

[7] J. Kim and M. Hastak, “Social network analysis: Characteristics of
online social networks after a disaster,” Int. J. Inf. Manage., vol. 38,
no. 1, pp. 86–96, 2018.

[8] C. Fu et al., “Link weight prediction using supervised learning
methods and its application to yelp layered network,” IEEE Trans.
Knowl. Data Eng., vol. 30, no. 8, pp. 1507–1518, Aug. 2018.

[9] J. R. Ullmann, “An algorithm for subgraph isomorphism,” J.
ACM, vol. 23, no. 1, pp. 31–42, 1976.

[10] G. Balazsi, A.-L. Barab�asi, and Z. Oltvai, “Topological units of
environmental signal processing in the transcriptional regulatory
network of escherichia coli,” Proc. Nat. Academy Sci. United States
America, vol. 102, no. 22, pp. 7841–7846, 2005.

[11] J. Ugander, L. Backstrom, and J. Kleinberg, “Subgraph frequen-
cies: Mapping the empirical and extremal geography of large
graph collections,” in Proc. 22nd Int. Conf. World Wide Web, 2013,
pp. 1307–1318.

[12] Q. Vohra, “Subgraph frequencies and network classification.” 2014.
[Online]. Available: http://snap.stanford.edu/class/cs224w-2014/
projects2014/cs224w-76-final.pdf

[13] M. Jha, C. Seshadhri, and A. Pinar, “Path sampling: A fast and
provable method for estimating 4-vertex subgraph counts,” in
Proc. 24th Int. Conf. World Wide Web, 2015, pp. 495–505.

[14] J. A. Grochow andM. Kellis, “Network motif discovery using sub-
graph enumeration and symmetry-breaking,” in Proc. Annu. Int.
Conf. Res. Comput. Mol. Biol., 2007, pp. 92–106.

[15] A. R. Benson, D. F. Gleich, and J. Leskovec, “Higher-order organiza-
tion of complex networks,” Sci., vol. 353, no. 6295, pp. 163–166, 2016.

[16] H. Wang et al., “Incremental subgraph feature selection for graph
classification,” IEEE Trans. Knowl. Data Eng., vol. 29, no. 1,
pp. 128–142, Jan. 2017.

[17] C. Yang, M. Liu, V. W. Zheng, and J. Han, “Node, motif and sub-
graph: Leveraging network functional blocks through structural
convolution,” in Proc. IEEE/ACM Int. Conf. Advances Social Netw.
Anal. Mining, 2018, pp. 47–52.

[18] F. Harary and R. Z. Norman, “Some properties of line digraphs,”
Rendiconti del Circolo Matematico di Palermo, vol. 9, no. 2,
pp. 161–168, 1960.

[19] M. Thoma et al., “Discriminative frequent subgraph mining with
optimality guarantees,” Statist. Anal. Data Mining: ASA Data Sci.
J., vol. 3, no. 5, pp. 302–318, 2010.

[20] S. Wernicke, “Efficient detection of network motifs,” IEEE/ACM
Trans. Comput. Biol. Bioinf., vol. 3, no. 4, pp. 347–359, Oct. 2006.1. https://github.com/GalateaWang

XUAN ET AL.: SUBGRAPH NETWORKS WITH APPLICATION TO STRUCTURAL FEATURE SPACE EXPANSION 2787

Authorized licensed use limited to: Zhejiang University. Downloaded on December 27,2021 at 08:51:23 UTC from IEEE Xplore. Restrictions apply.

http://snap.stanford.edu/class/cs224w-2014/projects2014/cs224w-76-final.pdf
http://snap.stanford.edu/class/cs224w-2014/projects2014/cs224w-76-final.pdf
https://github.com/GalateaWang

[21] S. Wernicke, “A faster algorithm for detecting network motifs,” in
Proc. Int. Workshop Algorithms Bioinf., 2005, pp. 165–177.

[22] R. Rotabi, K. Kamath, J. Kleinberg, and A. Sharma, “Detecting
strong ties using network motifs,” in Proc. 26th Int. Conf. World
Wide Web Companion, 2017, pp. 983–992.

[23] L. Kovanen, M. Karsai, K. Kaski, J. Kert�esz, and J. Saram€aki,
“Temporal motifs in time-dependent networks,” J. Statist. Mech.:
Theory Experiment, vol. 2011, no. 11, 2011, Art. no. P11005.

[24] Q. Xuan, H. Fang, C. Fu, and V. Filkov, “Temporal motifs reveal
collaboration patterns in online task-oriented networks,” Phys.
Rev. E, vol. 91, no. 5, 2015, Art. no. 052813.

[25] A. Paranjape, A. R. Benson, and J. Leskovec, “Motifs in temporal
networks,” in Proc. 10th ACM Int. Conf. Web Search Data Mining,
2017, pp. 601–610.

[26] C. E. Tsourakakis, J. Pachocki, and M. Mitzenmacher, “Scalable
motif-aware graph clustering,” in Proc. 26th Int. Conf. World Wide
Web, 2017, pp. 1451–1460.

[27] Y. Jing, Y. Bian, Z. Hu, L. Wang, and X.-Q. S. Xie, “Deep learning
for drug design: An artificial intelligence paradigm for drug dis-
covery in the big data era,” AAPS J., vol. 20, no. 3, 2018, Art. no. 58.

[28] T. Lane et al., “Comparing and validating machine learning mod-
els for mycobacterium tuberculosis drug discovery,”Mol. Pharmaceu-
tics, vol. 15, pp. 4346–4360, 2018.

[29] H.-T. Cheng et al., “Wide& deep learning for recommender systems,”
inProc. 1stWorkshopDeep Learn. Recommender Syst., 2016, pp. 7–10.

[30] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their
compositionality,” in Proc. Int. Conf. Neural Inf. Process. Syst., 2013,
pp. 3111–3119.

[31] Q. Le and T. Mikolov, “Distributed representations of sentences and
documents,” in Proc. Int. Conf. Mach. Learn., 2014, pp. 1188–1196.

[32] A. Narayanan, M. Chandramohan, R. Venkatesan, L. Chen, Y. Liu,
and S. Jaiswal, “graph2vec: Learning distributed representations
of graphs,” MLG, 2017, arXiv: 1707.05005.

[33] S. V. N. Vishwanathan, N. N. Schraudolph, R. Kondor, and
K. M. Borgwardt, “Graph kernels,” J. Mach. Learn. Res., vol. 11,
pp. 1201–1242, 2010.

[34] N. Shervashidze, P. Schweitzer, E. J. V. Leeuwen, K. Mehlhorn,
and K. M. Borgwardt, “Weisfeiler-Lehman graph kernels,” J.
Mach. Learn. Res., vol. 12, pp. 2539–2561, 2011.

[35] P. Yanardag and S. Vishwanathan, “Deep graph kernels,” in Proc.
21th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2015,
pp. 1365–1374.

[36] Q. Xuan et al., “Automatic pearl classification machine based on a
multistream convolutional neural network,” IEEE Trans. Ind. Elec-
tron., vol. 65, no. 8, pp. 6538–6547, Aug. 2018.

[37] D. K. Duvenaud et al., “Convolutional networks on graphs for
learning molecular fingerprints,” in Proc. Int. Conf. Neural Inf. Pro-
cess. Syst., 2015, pp. 2224–2232.

[38] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral networks
and locally connected networks on graphs,” inProc. Int. Conf. Learn.
Representations, 2014.

[39] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional
neural networks on graphs with fast localized spectral filtering,”
in Proc. Int. Conf. Neural Inf. Process. Syst., 2016, pp. 3844–3852.

[40] Z. Xinyi and L. Chen, “Capsule graph neural network,” in Proc.
Int. Conf. Learn. Representations, 2019. [Online]. Available: https://
openreview.net/forum?id=Byl8BnRcYm

[41] S. Agarwal, K. Branson, and S. Belongie, “Higher order learning
with graphs,” in Proc. 23rd Int. Conf. Mach. Learn., 2006, pp. 17–24.

[42] J.-P. Eckmann and E. Moses, “Curvature of co-links uncovers hid-
den thematic layers in the World Wide Web,” Proc. Nat. Academy
Sci. United States America, vol. 99, no. 9, pp. 5825–5829, 2002.

[43] D. Schi€oberg, F. Schneider, S. Schmid, S. Uhlig, and A. Feldmann,
“Evolution of directed triangle motifs in the Google+ OSN,” in
Proc. ACMWeb Sci. Conf., 2012, pp. 265–274.

[44] P. Wang, B. Xu, Y. Wu, and X. Zhou, “Link prediction in social
networks: The state-of-the-art,” Sci. China Inf. Sci., vol. 58, no. 1,
pp. 1–38, 2015.

[45] G. Li, M. Semerci, B. Yener, and M. J. Zaki, “Graph classification
via topological and label attributes,” Statistical Anal. Data Mining:
ASA Data Sci. J., vol. 5, no. 4, pp. 265–283, 2012.

[46] X. Wang, X. Li, and G. Chen, Network Science: An Introduction.
Beijing, China: Higher Education Press, 2012, pp. 87–90.

[47] S. N. Soffer and A. Vazquez, “Network clustering coefficient with-
out degree-correlation biases,” Phys. Rev. E, vol. 71, no. 5, 2005,
Art. no. 057101.

[48] A. K. Debnath, R. L. Lopez de Compadre, G. Debnath,
A. J. Shusterman, and C. Hansch, “Structure-activity relationship
of mutagenic aromatic and heteroaromatic nitro compounds.
Correlation with molecular orbital energies and hydro-
phobicity,” J. Medicinal Chemistry, vol. 34, no. 2, pp. 786–797, 1991.

[49] H. Toivonen, A. Srinivasan, R. D. King, S. Kramer, and C. Helma,
“Statistical evaluation of the predictive toxicology challenge 2000–
2001,” Bioinformatics, vol. 19, no. 10, pp. 1183–1193, 2003.

[50] K. M. Borgwardt, C. S. Ong, S. Sch€onauer, S. Vishwanathan,
A. J. Smola, and H.-P. Kriegel, “Protein function prediction via
graph kernels,” Bioinf., vol. 21, pp. i47–i56, 2005.

[51] T. Joachims, T. Hofmann, Y. Yue, and C.-N. Yu, “Predicting struc-
tured objects with support vector machines,” Commun. ACM,
vol. 52, no. 11, pp. 97–104, 2009.

[52] T. Kudo, E. Maeda, and Y. Matsumoto, “An application of boost-
ing to graph classification,” in Proc. Int. Conf. Neural Inf. Process.
Syst., 2005, pp. 729–736.

[53] X. Zhao, B. Zong, Z. Guan, K. Zhang, and W. Zhao, “Substructure
assembling network for graph classification,” in Proc. AAAI Conf.
Artif. Intell., 2018, pp. 4514–4521.

[54] Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin, “A neural
probabilistic language model,” J. Mach. Learn. Res., vol. 3,
pp. 1137–1155, 2003.

Qi Xuan (M’18) received the BS and PhD
degrees in control theory and engineering from
Zhejiang University, Hangzhou, China, in 2003
and 2008, respectively. He was a postdoctoral
researcher with the Department of Information
Science and Electronic Engineering, Zhejiang
University, from 2008 to 2010, and a research
assistant with the Department of Electronic Engi-
neering, City University of Hong Kong, Hong
Kong, in 2010 and 2017. From 2012 to 2014, he
was a postdoctoral fellow with the Department of

Computer Science, University of California at Davis, California. He is
currently a professor with the Institute of Cyberspace Security, College
of Information Engineering, Zhejiang University of Technology, Hang-
zhou. His current research interests include network science, graph data
mining, cyberspace security, machine learning, and computer vision. He
is a member of the IEEE.

Jinhuan Wang received the BS degree from the
Zhejiang University of Technology, Hangzhou,
China, in 2017. She is currently working toward
the MS degree in the School of Information Engi-
neering, Zhejiang University of Technology. Her
research interests include data mining in social
networks and machine learning.

Minghao Zhao received the BS degree from the
Wuhan University of Technology, China, in 2014,
and the MS degree from the College of Informa-
tion Engineering, Zhejiang University of Technol-
ogy, China, in 2019. He is currently working on
Fuxi AI Lab, Netease, Hangzhou, China. His
research interests include social networks analy-
sis and machine learning.

Junkun Yuan received the BS degree from the
Zhejiang University of Technology, Hangzhou,
China, in 2019. He is currently working toward the
PhD degree in the College of Computer Science
and Technology, Zhejiang University, Hangzhou,
China. His research interests include machine
learning, datamining, and causal inference.

2788 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 33, NO. 6, JUNE 2021

Authorized licensed use limited to: Zhejiang University. Downloaded on December 27,2021 at 08:51:23 UTC from IEEE Xplore. Restrictions apply.

https://openreview.net/forum?id=Byl8BnRcYm
https://openreview.net/forum?id=Byl8BnRcYm

Chenbo Fu received the BS degree in physics
from the Zhejiang University of Technology, in
2007, and the MS and PhD degrees in physics
from Zhejiang University, in 2009 and 2013,
respectively. He was a postdoctoral researcher
with the College of Information Engineering,
Zhejiang University of Technology and was a
research assistant with the Department of Com-
puter Science, University of California at Davis, in
2014. Currently, he is a lecturer with the College
of Information Engineering, Zhejiang University

of Technology. His research interests include network based algorithms
design, social network data mining, chaos synchronization, network
dynamics, and machine learning.

Zhongyuan Ruan received the BSc degree in
physics from Guizhou University, Guiyang, China,
in 2008, and the PhD degree in physics from the
East China Normal University, Shanghai, China, in
2013. He is currently a lecturer with the Institute
of Cyberspace Security, College of Information
Engineering, Zhejiang University of Technology,
Hangzhou, China. His current research interests
include complex systems and complex networks.

Guanrong Chen (M89-SM92-F97) received the
MSc degree in computer science from
Sun Yat-sen University, Guangzhou, China, in
1981, and the PhD degree in applied mathemat-
ics from Texas A&M University, College Station,
Texas, in 1987. He has been a chair professor
and the founding director of the Centre for Chaos
and Complex Networks, City University of
Hong Kong since 2000. Prior to that, he was a
tenured full professor with the University of Hous-
ton, Texas. He was awarded the 2011 Euler

Gold Medal, Russia, and conferred a Honorary Doctorate by the Saint
Petersburg State University, Russia, in 2011 and by the University of Le
Havre, Normandy, France, in 2014. He is a member of the Academy of
Europe and a fellow of the World Academy of Sciences, and is a highly
cited researcher in engineering as well as in mathematics according to
Thomson Reuters.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

XUAN ET AL.: SUBGRAPH NETWORKS WITH APPLICATION TO STRUCTURAL FEATURE SPACE EXPANSION 2789

Authorized licensed use limited to: Zhejiang University. Downloaded on December 27,2021 at 08:51:23 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

