

Black-box Adversarial Attacks Against Deep Learning Based Malware Binaries Detection with GAN

Junkun Yuan, Zhejiang University

Shaofang Zhou, Zhejiang University

Lanfen Lin*, Zhejiang University

Feng Wang, Zhejiang Police College

Jia Cui, China Information Technology Security Evaluation Center

Background of Malware (malicious software) Detection

Malware detection { manual features (e.g., API calls)
Malware detection { static features (part of the malware file)
both of them or else

- Deep neural networks have achieved great success.
- Recent trend: end-to-end detection with deep neural networks based

on raw binaries

Background of Adversarial Attacks

- Adversarial samples: add small perturbations to original data that is imperceptible to humans but can mislead the classifiers.
- Adversarial attack studies point out a serious threat to the security of deep learning algorithm and AI applications, and is important for the studies of robust AI.

Background of Previous Attacks against Malware Detection

- White-box attacks: rely on the complete information (data, gradient, model, et al.) of the detector.
 - Deficiency: not applicable in real-world scenarios
- Manual feature based attacks: speculate and extract the features of malware used for training detection models.
 - Deficiency: need plenty of resources and time, and not useful for raw binaries based detection

Challenges of Byte-level Black-box Attacks against Malware Detection

- Challenge 1: Simple changes lead to functionality damage.
- Challenge 2: binaries data varies widely in size.
- Challenge 3: Subtle perturbations will be ignored when transforming

between continuous and discrete space.

Introduction of Our Work

 We put forward a novel attack framework GAPGAN which Generates Adversarial Payloads via GANs.

- Byte-level attacks
- Functionality preservation
- Effective and efficient attacks

Problem Definition

• Binary file: $\mathcal{X} = \{0, \dots, 255\} \rightarrow \mathbf{b} = (b_1, \dots, b_n) \in \mathcal{X}^n$

• Benign software and malware: \boldsymbol{b}_{ben} , \boldsymbol{b}_{mal}

• Label of file *b* has label
$$y \in \{-1,1\}, y = \begin{cases} 1, & \text{benign software} \\ -1, & \text{malware} \end{cases}$$

- The goal of malware detector $f: f(\boldsymbol{b}_{ben}) = 1, f(\boldsymbol{b}_{mal}) = -1$
- The goal of adversarial attack model g: $\boldsymbol{b}_{adv} = g(\boldsymbol{b}_{mal}), f(\boldsymbol{b}_{adv})=1$, while \boldsymbol{b}_{adv} preserves the original function of \boldsymbol{b}_{mal} .

GAPGAN Framework

Training process & Attack process

8/20

Training Process & Attack Process

- Training process
 - Generator G: generate adversarial payloads and concatenate them to craft adversarial samples.
 - Discriminator D: distill the target black-box detector f.
 - > Train them concurrently.
- Attack process
 - Use the trained generator to attack.

Generating Adversarial Sample & Functionality Preservation

• Append zeros (blue part in figure) to the end of input binaries to match the input size *t* of the network as $\mathbf{b}' = (b_1, \dots, b_n, 0, \dots, 0) \in \mathcal{X}^t$.

10/20

• Normalize to continuous space: $\mathbf{x} = (x_1, ..., x_t) \in \mathbb{R}^t$.

Attack process

Generator \mathcal{G}

- Goal: learn characteristics of x_{mal} and generate corresponding effective sample x_{adv} that can mislead discriminator \mathcal{D} .
- Adversarial loss function:

 $\mathcal{L}_{\mathcal{G}} = -(1-\beta)\mathbb{E}_{\boldsymbol{x}\sim p_{\boldsymbol{x}_{adv}}}[\mathcal{D}(\boldsymbol{x})] - \beta\mathbb{E}_{\boldsymbol{a}\sim p_{\boldsymbol{a}_{adv}}}[\mathcal{D}(\boldsymbol{a})]$

• Consider both the global and the local (i.e., x_{adv} and a_{adv}) effectiveness with β :

$$\beta = \frac{\exp(\mathbb{E}_{x \sim p_{x_{adv}}}[\mathcal{D}(x)])}{\exp(\mathbb{E}_{x \sim p_{x_{adv}}}[\mathcal{D}(x)]) + \exp(\mathbb{E}_{a \sim p_{a_{adv}}}[\mathcal{D}(a)])}$$

Discriminator \mathcal{D}

 x_{adv} .

- Goal: Dynamically distill the target black-box model *f*.
- Distillation function:

 $\mathcal{L}_{\mathcal{D}} = \mathbb{E}_{\boldsymbol{x} \sim \boldsymbol{x}_{adv}} \mathcal{H}(\mathcal{D}(\boldsymbol{x}), f(\boldsymbol{x})) + \mathbb{E}_{\boldsymbol{x} \sim \boldsymbol{x}_{ben}} \mathcal{H}(\mathcal{D}(\boldsymbol{x}), f(\boldsymbol{x}))$

12/20

- Sample a batch of mixed data and get labels by querying *f*, use them for fitting *D* with *H*.
- D tries to learn the decision strategies of f on x_{ben} and

Dynamic Threshold Strategy

- Challenge: subtle perturbations will be ignored when transforming between continuous and discrete space.
- Dynamic threshold strategy: directly set the bytes as zeros that below the dynamic threshold.

•
$$e = \begin{cases} e, if |e| > \epsilon * \frac{i}{T_{max}} \\ 0, & else \end{cases}$$

e:byte in payloadsi:current training iteration time T_{max} :maximum training iteration time ϵ :maximum threshold value

Datasets

Datasets	Class	Number	Max	Mean	Source
1	Malware	3,436	93,986	51,715	VirusTotal
1	Benign	3,436	98,304	41,651	Chocolatey
2	Malware	5,000	195,584	80,707	VirusTotal
2	Benign	5,000	196,608	98,072	Chocolatey
3	Malware	10,000	394,128	126,276	VirusTotal
3	Benign	10,000	393,640	128,808	Chocolatey
4	Malware	3,000	196,189	117,812	Kaggle 2015
	Benign	3,000	195,320	92,526	Chocolatey

- Malware: from VirusTotal and Microsoft Malware Classification Challenge (Kaggle 2015)
- Benign software: from Chocolatey Software
- 70% for training the black-box model, 30% for adversarial attacks.

Target Black-box Models

Datasets	MalConv	А	В	С	D
1	96.40%	-	-	-	_
2	96.42%	94.94%	95.99%	95.30%	94.70%
3	97.22%	-	-	-	-
4	95.55%	95.02%	95.27%	95.24%	95.30%

15/20

- A: CNN-based model
- B: CNN-LSTM-based model
- C: CNN-GRU-based model
- D: Parallel-CNN-based model

Attack Success Rate (ASR) of GAPGAN against MalConv

Payloads Rate	Dataset 1	Dataset 2	Dataset 3	Dataset 4
1%	64.66%	6.28%	2.15%	4.13%
2.5%	100.00%	36.10%	18.14%	30.99%
5%	100.00%	77.78%	43.27%	53.49%
10%	100.00%	98.21%	72.89%	76.88%
20%	100.00%	100.00%	88.95%	87.41%

- Payloads rate: the rate of the length of payloads to that of binaries for detection.
- ASR of adversarial samples can reach 100% with only 2.5% of the total length of the data for detection.

Attack Success Rate of GAPGAN and Others

		Adversarial attack methods						
Opt. [14]		. [14] A	AdvSeq [23]	MalGAN [11]		GAPGAN		
Black-bo	Х		\checkmark	\checkmark		\checkmark		
Run time	>	2h	-	0.02s		0.02s		
Attack le	vel By	tes	API calls	API calls		Bytes		
Detector		Dataset 2			Dataset 4			
Detector	Random	Opt.	GAPGAN	Random	Opt.	GAPGAN		
MalConv	60.21%	99.87 %	98.21%	57.52%	68.34%	76.88%		
А	57.84%	90.41%	76.04%	17.10%	85.09%	51.31%		
В	44.04%	93.32%	99.35%	46.50%	77.24%	68.67%		
С	64.25%	92.74%	84.40%	55.72%	78.17%	64.96%		
D	70.47%	97.23%	99.93%	9.03%	74.49%	87.80%		

- Opt.: byte-level optimization based white-box attack method
- AdvSeq: API calls sequences based attack method
- MalGAN: API calls based attack method

18/20

Attacks under Defenses

Defense	Detector	Dataset 2			Datast 4		
		Random	Opt.	GAPGAN	Random	Opt.	GAPGAN
RND	Malconv	24.64%	51.23%	63.69%	49.59%	41.25%	75.73%
	А	20.67%	57.84%	45.00%	0.76%	37.14%	23.64%
	В	0.00%	62.29%	87.47%	5.79%	37.82%	41.07%
	С	7.65%	39.47%	34.57%	22.91%	29.74%	39.22%
	D	9.52%	43.58%	92.35%	3.06%	54.41%	71.09%
Adv.	Malconv	23.87%	29.78%	57.04%	13.10%	22.17%	30.46 %
	А	0.00%	15.14%	23.72%	0.00%	7.72%	9.49%
	В	0.00%	27.17%	39.17%	0.00%	9.38%	15.82%
	С	1.04%	19.77%	24.18%	4.99%	13.47%	18.13%
	D	0.00%	31.65%	41.73%	0.00%	17.97%	27.60%

RND: random nullification data defense method

• Adv: adversarial training defense method

Thanks!