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Abstract—Attackers often use domain generation algorithms
(DGAs) to create various kinds of pseudorandom domains
dynamically and select a part of them to connect with command
and control servers, therefore it is important to automatically
detect the algorithmically generated domains (AGDs). AGDs can
be broken down into two categories: character-based domains
and wordlist-based domains. Recently, methods based on machine
learning and deep learning have been widely explored. However,
much of the previous work perform well in detecting one kind of
DGA families but poorly in classifying another kind. A general
detection system which is applicable to both kinds of domains
still remains a challenge. To address this problem, we propose a
novel real-time detection method with high accuracy as well as
high coverage. We first convey a domain name into a sequence
of word-level or character-level components, then design a deep
neural network based on temporal convolutional network to
extract the implicit pattern and classify the domain into two or
more categories. Our experimental results demonstrate that our
model outperforms state-of-the-art approaches in both binary
classification and multi-class classification, and shows a good
performance in detecting different kinds of DGAs. Besides, the
high training efficiency of our model makes it adjust to new
malicious domains quickly.

Index Terms—domain generation algorithm, malicious domain
names, deep learning, convolutional neural network

I. INTRODUCTION

Malware needs to control the infected devices to connect
with command and control (C&C) servers. Traditional method
used by the attackers is hardcoding a list of static domains or
IP addresses in the malware code, which makes it easy for
the defenders to cut all the links once a malware was found
and reverse engineered. Thus, newer families of malware
begin to use domain generation algorithms (DGAs) to circum-
vent network defenses. Attackers can generate a very large
number of pseudorandom domains dynamically via various
kinds of DGAs using different generation schemes, including:
(1) arithmetic-based: calculating a sequence of alphanumeric
codes, (2) hash-based: using the hexadecimal representation
of a hash, (3) wordlist-based: concatenating several words,

(4) permutation-based: producing different permutations of an
initial domain name [1]. Blacklists and sinkhole become inef-
ficient due to the low coverage. It is important to automatically
detect the algorithmically generated domains (AGDs).

Recently, many studies have been addressed the problem of
DGA detection. There are two kinds of methods: retrospec-
tive detection and real-time detection. Retrospective detection
methods take batches of domains as input and cluster similar
domains according to lexical features and/or other contextual
information before classification. Such methods are usually
slow and cannot detect the ADGs before the communication
have been established, thus they cannot be used for real-time
detection and prevention.

On the other hand, real-time detection methods can classify
malicious domains with benign domains solely on the basis
of a single domain name. Early real-time approaches are
mainly based on traditional machine learning or statistical
learning, having the limitation of the dependence on the hand-
craft features. To accomplish feature-less real-time detection,
Woodbridge et al. [2] proposed a method utilizing Long
Short-Term Memory (LSTM) network, which is the first work
applying deep learning to this problem. Subsequently, methods
based on different deep learning models including recurrent
neural networks (RNNs) and convolutional neural networks
(CNNs) have been widely explored and show significantly
great performance in detection, except for the domains gen-
erated by wordlist-based DGAs [3]–[6]. We infer the reason
might be that the wordlist-based DGAs generate malicious
domains which have similar character distribution with benign
domains, while others, we can collectively call them character-
based DGAs, mostly produce random-looking domains.

Currently, several researchers turn their attention to the
problem of detecting wordlist-based AGDs, coming up with
some solutions such as: using random forest with hand-craft
features [7], building word graph in domains [8], designing a
score to measure the similarity between domains and English
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words [9], and utilizing context-sensitive word embedding
[10]. They focus on wordlist-based DGAs detection and have
a good performance, but increase the computational complex-
ity or decrease the accuracy when detecting character-based
DGAs. Therefore, how to detect AGDs in real-time with high
coverage still remains a challenge.

In real world, the detection system needs to identify differ-
ent kinds of AGDs hiding in the benign domains, so a general
classifier has higher application value. On the other hand, there
is an adversarial relationship between attackers and defenders.
Attackers keep on devising new algorithms to evade detection.
A feasible way for defenders is to retrain the model using
the latest data. Thus it is important to increase the training
efficiency so that the model can adapt to new DGA families
as quickly as possible.

In this paper, we proposed a novel method of real-time
detection for both character-based AGDs and wordlist-based
AGDs. The main idea behind our approach is that we utilize a
convolutional neural network (CNN) architecture to extract the
implicit pattern of component strings in a domain. The com-
ponent string might be single letter, number, other punctuation
or meaningful word. The major advantages of our approach
are as following:

• It provides a universal classifier which can distinguish
various kinds of AGDs with benign domains. Especially,
it gets great result in detection for wordlist-based DGAs.

• It achieves better performance than the state-of-the-art
methods in both binary classification task and multi-class
classification task.

• It has high training efficiency, thus it takes less time
to retrain. As a result, our classifier can adjust to new
malicious domains quickly.

The remaining part of the paper is structured as follows:
In Section II, we introduce related work. In Section III, we
describe the details of the methodology used for this study.
In Section IV and Section V, we show the experimental
studies for evaluating the proposed model. In Section VI, we
summarize our work and discuss some future work.

II. RELATED WORK

Over past few years, a great deal of previous research
has focused on automatically detection of algorithmically-
generated domains. Yadav et al. [11], [12] proposed the
methodology through the statistical analysis of the unigram
and bigram distribution of grouped domains. The detection
system Pleiades designed by Antonakakis et al. [13] found
DGA by clustering similar Non-Existent Domains (NXDo-
mains) according to statistical characteristics and query hosts,
then used a supervised learning approach to identify the DGA
family. Similarly, Zhou et al. [14] captured NXDomain traffic
and grouped domains via calculating the similarity of live
time span and visit pattern. The problem of these retrospective
methods is that they all need batches of domains to make a
classification.

Later, some researchers attempted to classify based on
single domain. Krishnan et al. [15] presented an algorithm

Fig. 1. The overall network architecture of our method.

based on sequential hypothesis testing, which extracted the
NXDomain traffic patterns of individual hosts. Study under-
taken by Raghuram et al. [16] indicated that algorithmically
generated domain names and human-created domain names
typically had different distributions, thus a probability model
of character sequences was built for classification. Mowbray et
al. [17] discovered DGAs from Domain Name Service (DNS)
query data based on the distribution of second-level string
lengths. The Phoenix proposed by Schiavoni et al. [18] distin-
guish DGAs and non-DGAs using a combination of string
and IP-based features. The limitation of these approaches
is the requirement of contextual information or hand-crafted
features.

Recently, some deep learning methods had been applied to
DGA detection. The first work was conducted by Woodbridge
et al. [2] which employed a LSTM network and proved that
the neural network could carry out feature-less and real-time
detection with high accuracy. Subsequently, Lison et al. [3]
evaluated the performance of different designs of RNN on
a larger dataset. Yu et al. [4] proposed a novel technology
to collect data from real traffic, and used CNN and RNN to
make a classification. Saxe et al. [5] explored the capacity
of CNN in cybersecurity problems and designed a parallel
CNN architecture. Besides, there were a lot of studies such
as [6], [19]–[22] comparing the performance of different
DGA classifiers, which further demonstrated that deep learning
approaches significantly outperform traditional methods.

However, methods mentioned above still underperformed at
detecting wordlist-based DGAs. To overcome this problem,
Yang et al. [7] concluded 16 features through analysis and
used a random forest as classifier. Pereira et al. [8] proposed
a graph-based approach called WordGraph to learn the dic-
tionary used by DGA. Curtin et al. [9] devised smashword
score to measure the similarity between a DGA family and
English words, then used a novel RNN architecture combined
with domain registration side information for detection. Koh et
al. [10] utilized Embeddings from Language Models (ELMo),
a context-sensitive word embedding, to learn the semantic
signatures of the wordlist-based DGA families.

III. METHOD

We propose a novel method for the DGA detection problem
with special emphasis on high coverage and high efficiency. In
order to adapt to different kinds of AGDs including character-
based and wordlist-based domains, we first convey a domain
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name into a sequence of word-level or character-level compo-
nents, which might be single letter, number, other punctuation
or meaningful word. Empirical evaluation demonstrated that
CNN architecture could be applied to sequence modeling task
and outperformed baseline RNN architecture [23]. Inspired by
this work, we adjust temporal convolutional network (TCN)
to DGA detection problem due to its good performance and
high efficiency. We design a CNN-based deep neural network
architecture to extract the implicit pattern of component strings
in a domain and classify the domain into two or more
categories.

The overall network architecture is illustrated in Fig. 1.
Our model consists of a embedding layer, six stacked residual
blocks and a full-connected layer. In binary classification, the
activation function in last layer is sigmoid, while in multi-class
classification, the activation function is softmax.

A. Embedding

The input domains are fully qualified domain names
(FQDNs). Each FQDN consists of a list of strings, technically
called labels, separated by a dot. Labels going from right to
left are called the top-level domain (TLD), the second-level
domain, the third-level domain and so on, respectively. For
example, the domain wikipedia.org is composed of the TLD
com and the second-level domain wikipedia. The valid TLDs
are prescribed, but other labels are open for reservation by
end-users.

The embedding module aim at dividing the domain name
into a sequence of components, then covert each component
into an corresponding embedding vector. Firstly, we segment
the domain name into different labels. Secondly, we further di-
vide the separated domain labels into word-level components.
Thirdly, we check each component to see whether it can be
further separated into character-level components. Finally, the
component strings are passed through a embedding layer.

It is easy to separate labels in domains since they are
delimited by dots. However, how to parse out words from
domain labels is a more difficult problem corresponding to
word segmentation. One solution is to find the optimum
segmentation by means of calculating word probabilities of
each substrings based on word frequency dictionary. There
have been a wealth of useful tools based on such method and
amongst them we choose WordSegment. Besides, on purpose
of getting better segmentation, we assume that if a substring
is not in the dictionary, it is not a common meaningful word
and need to be divided into single characters.

As an example, the second-level domain microsoftonline of
microsoftonline.com can be divided into microsoft and online,
which are both meaningful words. So the list of components
is [microsoft, online]. Give another example, when the input
is weaqovir, the optimum result through word segmentation is
weaqovir, which is not included in the frequency dictionary,
so it need be further split up and the list of components is [w,
e, a, q, o, v, i, r].

After segmentation, the input domain is converted into a
sequence of component strings [s1, s2, . . . , sn]. Then we map

Fig. 2. The structure of residual block.

strings to integers through hash algorithm and get the vector
[i1, i2, . . . , in]. The last step is to embedded the vector into
n×m floating point matrix, each row of which is a embedding
m-dimension vector. In our network, we set m to 128.

B. Residual Blocks

Once the domains are embedded into matrix, we use six
similar stacked residual blocks to extract and aggregate fea-
tures. The structure of residual block is showed in Fig. 2.

The first and most important layer of residual block is the
dilated causal convolutional layer, which is more suitable for
handling sequence data than plain convolutional layer. As we
known, the discrete operator ∗ between signal f and kernel k
is defined as:

(f ∗ k) (t) =
+∞∑

τ=−∞
k (τ) ∗ f (t− τ) (1)

While the dilated causal convolution operator, denoted by
∗l, is defined as:

(f ∗l k) (t) =
+∞∑

τ=0

k (τ) ∗ f (t− d · τ) (2)
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Fig. 3. An example of four dilated causal convolutional layers, where kernel
size is 2 and dilation factor d is initialized to 1 then increases exponentially.
The output at t is calculated by 16 elements of the input before t.

The major differences includes: (1) The dilation factor d
is introduced, as a result, the elements of signal involved in
the calculation take a step by d. It helps efficient enlargement
of the receptive field. (2) The output at time step t calculates
only with the elements at or before t in the input. Thus, it
avoids leakage of future information when generating data in
the past.

We follow the common way when using dilated convolution,
i.e., to make the dilation factor increase exponentially at
each convolutional layer. Fig. 3 shows an example of four
layers. After analyzing the maximum length of domains, we
eventually use six residual blocks so that the receptive field
is large enough. For the residual block i(i = 1, 2, . . . , 6), the
dilation factor d is assigned to 2i−1, i.e., d = 1 in the first
block, d = 2 in the second block, d = 4 in the third block,
and so on.

Following the dilated causal convolutional layer, there are
a rectified linear unit (ReLU) layer, a normalization layer and
a dropout layer.

Besides, we apply residual connection, which means that the
result of the dropout layer is added to the input of the residual
block. It can further increase model capacity and make the
training easier.

C. Full-connected Layer

Finally, a full-connected layer takes the implicit extracted
feature vector as input and make a classification.

In this paper, we focus on two task of classification: (1)
binary classification, i.e., determine whether the domain is
generated by DGAs or not, (2) multi-class classification, i.e.,
determine which DGA family the domain belongs to.

For binary classification, we use sigmoid activation function
and output a real value p ∈ [0, 1], which indicates the
possibility that the domain is malicious. While for multi-class
classification, we use softmax activation function and output a
vector [p1, p2, . . . , pn], where n is the number of classes and
pi(i = 0, 1, . . . , n) indicates the possibility that the domain
belong to class i.

TABLE I
A PART OF DGA DATA

DGA Kind DGA Family Number Of Domains
Arithmetic-based Banjori 400,000

Hash-based Bamital 271,128
Permutation-based Volatile Cedar 498

Wordlist-based Matsnu 81,297

IV. EXPERIMENTAL SETUP

In this section, we introduce our experimental setup, includ-
ing the datasets, the metrics and the baseline models.

A. Datasets

The data for experiments contains benign domains and
malicious domains. We collect them from two source: (1) For
benign domains, we download Alexa top 1 million domains1.
(2) For malicious domains, we download the full data until
the end of 2017 from DGArchive.2

To decrease the impact of class imbalance, we ignore the
DGA families whose domains are fewer than 100. In addition,
if domains of a DGA family are more than 400,000, we
random select 400,000 domains. Eventually, the experimental
dataset contains 73 DGA families and one special benign
family, total 10,817,465 domains. Four kinds of DGAs are all
included in the data. It is a very large-scale and diverse dataset
and has similar distribution with data in the real word. TABLE
I shows the details of some representative DGA families.

B. Metrics

The following metrics are used to evaluate the performance
of models:

• Precision. It is defined as in:

Precision =

∑
TruePositive

∑
TruePositive+

∑
FalsePositive

(3)

• Recall. It is defined as in:

Recall =

∑
TruePositive

∑
TruePositive+

∑
FalseNegative

(4)

• F1 score. It is defined as in:

F1 = 2 · Precision ·Recall

Precision+Recall
(5)

• Area under the curve (AUC). It is the area under re-
ceiver operating characteristic (ROC) curves. To plot
ROC curves, we first calculate the true positive rate (TPR)
which is defined as in (6) and false positive rate (FPR)
which is defined as in (7), then plot TPR and FPR at
various thresholds.

TPR =

∑
TruePositive

∑
TruePositive+

∑
FalseNegative

(6)

FPR =

∑
FalsePositive

∑
FalsePositive+

∑
TrueNegative

(7)

1http://s3.amazonaws.com/alexa-static/top-1m.csv.zip
2https://dgarchive.caad.fkie.fraunhofer.de/
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For multi-class classification, the results of different classes
must be averaged. We consider two average types:

• Macro average. It calculates the unweighted mean of each
class. The class imbalance will not be taken into account.

• Weighted average. It calculates metrics for each class,
then average the scores of classes weighted by the number
of related class, which considers class imbalance.

C. Baseline Models

Empirical comparison between different character-level
DGA detection models shows that there is little difference
between them in terms of accuracy [6]. Therefore, we choose
two representative model of them as baseline models: LSTM
model proposed by Woodbridge et al. [2] and CNN model
proposed by Saxe et al. [5].

In addition, among existing works which focus on detecting
wordlist-based AGDs, we choose the model utilizing ELMo
proposed by Koh et al. [10] as another baseline model, because
it is the state-of-the-art approach based on deep learning and
does not rely on other contextual information.

V. RESULTS

We implement our model and baseline models using Keras
framework, then evaluate the performance of these four models
for binary classification task and multi-class classification task,
respectively. All experiments are performed using 10-fold
cross validation. The results are presented in this section.

A. Binary Classifiaction

TABLE II presents Precision, Recall, F1 score as well as
the training time of four models on binary classification. As
we can see, our model gets best score in terms of Precision.
Although the Recall of our model is not the highest, the F1

score of our model, which measures the trade-off of Precision
and Recall, is higher than those of other baselines. Besides,
the ROC curves of four models and their AUC are shown in
Fig.4. Our model shows best performance with the maximum
AUC of 0.9962. Moreover, at the same FPR, the TPR of our
model are always larger than that of other models.

It is notable that our model not only gets high accuracy
on character-based domains, but also has outstanding ability
to classify wordlist-based domains. For example, our model
can detect Matsnu, one of representative wordlist-based DGAs,
with an Recall of 0.9590. While for LSTM model, CNN model
and ELMo model, the Recall results are 0.7962, 0.7610 and
0.7552, respectively.

In terms of the training time, two models based on CNN ar-
chitecture, i.e., our model and CNN model, spend significantly
less time than LSTM model and ELMo model. Although the
training time of our model is more than CNN model, but the
gap between these two models is small.

To comprehensively concluded results mentioned above, our
model slightly outperforms other baseline models for binary
classification task, which suggests that our model has the
ability to make a more accurate decision about whether a given
domain is malicious or benign.

TABLE II
RESULT OF BINARY CLASSIFICATION

Model Precision Recall F1 Score Training Time (s)
LSTM [2] 0.9925 0.9866 0.9895 17,890
CNN [5] 0.9896 0.9880 0.9888 2636

ELMo [10] 0.9834 0.9896 0.9865 75,621
Our Model 0.9961 0.9875 0.9918 4226

Fig. 4. ROC curves for the binary classification by our model and other
baseline models.

B. Multi-class Classifiaction

The empirical results of multi-class classification by four
models are set out in TABLE III. Both macro average scores
and weighted average scores are provided. Our model signif-
icantly outperforms other baseline models on all metrics, and
it is a little slower than CNN model but much quicker than
LSTM model and ELMo model.

The results suggest that our model is more likely to ac-
curately identify which DGA family the malicious domains
belong to. In practice, the right DGA family labels can provide
useful information for further analysis.

Specially, ELMo model has a relatively poor performance in
this experiment. The reason might be that ELMo model have
an excellent performance merely on the dataset including a
few DGA families.

VI. CONCLUSION

This paper presents a novel real-time DGA detection method
with special emphasis on high coverage and high efficiency.
We first convey a domain name into a sequence of word-level
or character-level components, which might be single letter,
number, other punctuation or meaningful word, then design a
deep neural network based on temporal convolutional network
to extract the implicit pattern and classify the domain into two
or more categories. Experiments on dataset including various
kinds of DGA families showed that our model outperforms
other state-of-the-art methods in terms of detection accuracy,
detection coverage as well as training efficiency.
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TABLE III
RESULT OF MULTI-CLASS CLASSIFICATION

Model Macro Average Weighted Average Training Time (s)Precision Recall F1 Score Precision Recall F1 Score
LSTM [2] 0.5705 0.5843 0.5615 0.7596 0.7851 0.7632 24,950
CNN [5] 0.5493 0.5478 0.5307 0.7593 0.7675 0.7467 1326

ELMo [10] 01760 0.1559 0.1437 0.3085 0.3353 0.2766 56,040
Our Model 0.6115 0.6390 0.6123 0.8017 0.8217 0.8082 4553

Further research should be undertaken to explore how to
improve the performance of detecting the domains generated
by new DGA family which is not included in the training data.
In addition, how to minimize the impact of class imbalance in
multi-class classification remains to be answered.
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